Clinical Reasoning: Progressive Proximal Weakness in a 61-Year-Old Male

Author(s):
Margaret Yu, MD¹; Mireille Bitar, MD²; Michael Collins, MD³; Jinny Tavee, MD⁴

Corresponding Author:
Margaret Yu
margaret.yu@northwestern.edu

Affiliation Information for All Authors: 1. Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL 2. Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 3. Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI 4. Division of Neurology, National Jewish Health, Denver, CO

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Abstract

A 61-year-old man presents with painless progressive weakness and was found to have myopathy both clinically and on diagnostic workup.

The etiology of his myopathy is the first reported case of anti-SRP myopathy and sarcoidosis overlap syndrome. The high titer anti-SRP antibody and phenotype support the diagnosis of an overlap syndrome, defined as multiple distinct autoimmune diseases occurring together.

This case highlights the wide differential for myopathies and the different testing and components to consider when approaching a diagnosis.

Section 1

A 61-year-old male presented with a six-week history of painless progressive weakness.

Initially, he had difficulty climbing stairs. Three weeks later, he could not reach overhead to change light bulbs and had exertional shortness of breath. He choked on solids and liquids resulting in a 20lb weight loss. Review of systems was negative for diurnal variation, ptosis, diplopia, speech changes, rash, sensory changes, pseudobulbar affect, autonomic symptoms, or recent infection.
Prior history included hypertension, hyperlipidemia, and non-ischemic cardiomyopathy diagnosed two years prior. Echocardiography demonstrated ejection fraction of 20-25% and dilated left ventricle. Cardiac MRI showed transmural enhancement of the inferolateral wall; the initial endomyocardial muscle biopsy revealed hypertrophic myocytes and minimally increased interstitial fibrosis without inflammation. The cardiomyopathy etiology remained idiopathic, and he was started on aspirin and atorvastatin. Atorvastatin was stopped after his progressive weakness began.

His mother had systemic lupus erythematosus and he had a thirty-pack-year history of tobacco history, but no alcohol or illicit drug use.

Clinical examination showed symmetric proximal weakness with Medical Research Council (MRC) grade of 4/5 in the upper and 3/5 in the lower extremities. Distal strength was intact. Neck flexion and extension were 4/5 and 4+/5 respectively. The weakness was not fatigable. Tone was normal without atrophy or fasciculations. No bulbar muscle weakness or dysarthria noted. Deep tendon reflexes were 2+ throughout with flexor plantar responses bilaterally. He had a waddling gait but the remainder of the exam including cranial nerves, sensory modalities, and cerebellar testing was normal. There were no rashes or other dermatologic findings.

Questions for consideration:

- Where should the lesion be localized?
- What is the differential diagnosis?

Section 2

His proximal weakness and lack of central findings (hyperactive reflexes, Hoffman sign, Babinski sign, and spasticity) point toward the peripheral nervous system. Pure motor findings further localize the lesion to the anterior horn cell, peripheral nerve, neuromuscular junction, or muscle.

The symmetric and proximal distribution of weakness make motor neuron disease less likely. Presentation is not typical of neuromuscular junction pathology like myasthenia gravis (ocular findings were spared despite severity of generalized weakness and dysphagia) or Lambert-Eaton Myasthenic Syndrome (lack of dysautonomia or post-exercise facilitation). Peripheral nerve localization is possible, but both proximal and distal weakness would be expected, and most are hypo-reflexic.

In symmetric proximal weakness without sensory symptoms, primary muscle diseases are high on differential. Myopathies can either be inherited or acquired. The rapidly progressive course at age 61 is suggestive of an acquired etiology, whereas a chronic condition with young onset points toward an inherited etiology. With acute to subacute onset, toxic and inflammatory myopathies are on the differential. Common toxic etiologies include cholesterol-lowering medications, corticosteroids, amiodarone, and colchicine. Inflammatory etiologies include dermatomyositis, polymyositis, anti-synthetase syndrome, anti-HMGCR (3-hydroxyl-3-methylglutaryl-coenzyme A reductase) myopathy, anti-SRP (signal recognition particle) myopathy and sarcoidosis. Infectious etiology is less likely given no history of fever, chills, night sweats or recent travel.
His prior idiopathic non-ischemic cardiomyopathy raises concern for myopathies with cardiac involvement, namely muscular dystrophies, inflammatory myopathies (e.g., dermatomyositis and autoimmune necrotizing myopathy) and amyloidosis.

Questions for consideration:

- Which investigations narrow the differential?

Section 3

He had an elevated troponin I (peak 6.47 ng/mL) and elevated creatine kinase (CK) of 8,889 IU/L. Comprehensive metabolic panel was unremarkable except for elevated liver enzymes (ALT 254 and AST 189 units/L), which can be seen in both muscle and liver disease. Other labs for liver pathology such as alkaline phosphatase, bilirubin, albumin were not abnormal. The liver appeared unremarkable on imaging. Renal function, electrolytes, complete blood count, thyroid-stimulating hormone, serum protein electrophoresis with immunofixation, antinuclear antibody, autoimmune profile, hepatitis panel, and HIV antigen/antibody were unrevealing. Serum and urine light chain analyses were also unrevealing, not suggestive of primary (AL type) amyloidosis. Urinalysis displayed trace protein and a moderate amount of blood. Testing for myoglobinuria was not performed at this time.

Electromyography (EMG) showed evidence of a generalized irritable myopathy characterized by diffuse fibrillation potentials and small, polyphasic motor units in a proximal to distal gradient.

Repeat cardiac catheterization to see if there were now ischemic disease was negative. A second endomyocardial biopsy revealed interstitial fibrosis and non-caseating granulomas (NCGs) consistent with cardiac sarcoidosis, which was further supported by CT-PET findings of patchy heterogeneous radiotracer uptake within the myocardium. Congo red stain was negative for amyloid, and acid-fast bacilli and fungal stains were negative. Serum angiotensin converting enzyme, while non-sensitive or specific, was elevated at 105 unit/L which supported the diagnosis of cardiac sarcoidosis in conjunction with the biopsy findings. The patient started prednisone 30 mg daily.

Questions for Consideration:

- Is this presentation typical for sarcoidosis myopathy?

Section 4

Asymptomatic muscle involvement is seen in 50% of patients with sarcoidosis, but clinically apparent myopathy in <2% of cases. The most common form of muscle involvement is a chronic insidiously progressive myopathy characterized by remissions and exacerbations. Muscle weakness is typically proximal-predominant with occasional involvement of trunk, neck, facial, bulbar and respiratory muscles. CK is typically normal and EMG demonstrates a myopathic pattern with variable frequency of abnormal spontaneous activity.

Muscle biopsy typically shows active inflammatory process with non-caseating granulomas with predominantly CD4-positive lymphocytic infiltration. Treatment and prognosis are ill defined.
a review of 19 cases of acute sarcoidosis myositis, all patients presented with proximal-predominant muscle weakness, and only three patients had dysphagia with bulbar weakness. EMG showed evidence of a myopathy in 11/11 patients with a mean CK of 2,293 IU/L.5

Questions for Consideration:

- As the patient’s presentation is atypical for sarcoidosis myopathy, what further investigations should be considered?

Section 5

Muscle biopsy of the left deltoid obtained before treatment initiation showed scattered necrotic and regenerating fibers with paucity of inflammation localized to necrotic fibers (Figure 1). No NCGs were seen. Patient’s MRI demonstrated diffuse edema and postcontrast enhancement within the paraspinal musculature and psoas muscles, which is a common finding in inflammatory myopathies7.

Anti-SRP antibody was positive with a titer greater than 100 (reference range <11). Anti-HMGCR antibody and anti-synthetase antibody were negative. He was diagnosed with anti-SRP myopathy-sarcoidosis overlap syndrome.

Treatment began with IV methylprednisolone (1 gram daily for three days) followed by IV immunoglobulin (IVIG) 2 gm/kg over 4 days. Within days of treatment, there was strength and mobility improvement. He was discharged with oral corticosteroids, outpatient rituximab infusions and monthly IVIG treatment. Due to his underlying cardiac status and concerns for volume overload, rituximab and IVIG were discontinued. He maintains on methotrexate and low dose corticosteroids. At three months follow-up, his CK normalized, and his neurological examination was normal except for trace hip flexion weakness. His cardiac status did not improve.

Discussion

This is the first reported case of overlap anti-SRP myopathy and sarcoidosis syndrome. Although a necrotizing myopathy has rarely been reported with sarcoidosis myopathy, the presence of high titer anti-SRP antibody and phenotype support the diagnosis of an overlap syndrome, defined as multiple distinct autoimmune diseases occurring together.

Anti-SRP myopathy was initially classified as a severe form of polymyositis. In 2003 the European Neuro Muscular Center (ENMC) International Workshop on Idiopathic Inflammatory Myopathies established diagnostic criteria recognizing immune-mediated necrotizing myopathies (IMNM), also known as necrotizing autoimmune myopathies (NAMs), as separate entities among the idiopathic inflammatory myopathies based on studies noting distinct clinical phenotype, histopathology, serology, and treatment options.6 In the most recent 2017 ENMC classification criteria, IMNM, including anti-SRP myopathy, are now characterized by rapidly progressive proximal muscle weakness and, markedly elevated creatinine kinase (CK) levels7,10.
Onset age is typically after the fourth decade, peaking in the 6th decade, with anecdotal cases of juvenile onset reported. Progression is usually subacute over 5 to 6 months and can be manifested as a rapid progression over 5-6 weeks although chronic insidious presentation mimicking muscular dystrophy can occur. Patients typically have proximal symmetric weakness affecting legs more than the arms with MRC grade of ≤3/5 in 50-63% of cases. Neck weakness and dysphagia are frequent manifestations. Skin involvement is rare in anti-SRP myopathy and studies do not show increased risk of malignancy. Interstitial lung disease (ILD) is noted in about 20% of cases. Cardiac involvement show cardiac conduction abnormalities but not cardiomyopathy in case reports.

CK levels are markedly elevated to more than 1000 IU/L in most patients. EMG demonstrates evidence of a myopathy with positive sharp waves and/or fibrillation potentials in 48% of patients. Muscle biopsy usually reveals a necrotizing myopathy indicated by prominent muscle fiber necrosis and regeneration and a paucity of inflammation similar here. The molecular mechanism of anti-SRP myopathy is not fully elucidated and has not yet been demonstrated in animal models. However, the presence of membrane attack complexes on the surface of non-necrotic muscle fibers in IMNM suggests that antibody/complement-mediated cell death may underlie myofiber toxicity.

In anti-SRP myopathy, treatment is currently based on expert opinion and small case series. As some cases may remain refractory to conventional monotherapy, recent consensus statement recommended IV/oral corticosteroids along with the addition of IVIG or other immunosuppressive agent such as methotrexate or rituximab. In severe cases rituximab may be added. Prognosis is variable, but treatment is usually lifelong.
References


Figure 1: Hematoxylin and eosin stained section showing few necrotic myofibers invaded by macrophages (200x magnification).
Clinical Reasoning: Progressive Proximal Weakness in a 61-Year-Old Male
Margaret Yu, Mireille Bitar, Michael Collins, et al.
Neurology published online October 21, 2021
DOI 10.1212/WNL.0000000000013000

This information is current as of October 21, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/10/20/WNL.0000000000013000.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Neuromuscular Disease
http://n.neurology.org/cgi/collection/all_neuromuscular_disease
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases
Muscle disease
http://n.neurology.org/cgi/collection/muscle_disease

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.