Clinical Reasoning: A 31-Year-Old Man With Sequential Vision Loss

Author(s):
Blake Fortes, MD1; John J Chen, MD and PhD1, 2; M. Tariq Bhatti, MD1, 2

Corresponding Author:
M. Tariq Bhatti
bhatti.muhammad@mayo.edu

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Departments of Ophthalmology, Mayo Clinic College of Medicine. Rochester, MN, USA. 2. Department of Neurology, Mayo Clinic College of Medicine. Rochester, MN, USA.

Contributions:
Blake Fortes: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data.
John J Chen: Drafting/revision of the manuscript for content, including medical writing for content.
M. Tariq Bhatti: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data.

Number of characters in title: 65

Abstract Word count: 104

Word count of main text: 1544

References: 14

Figures: 2

Tables: 0

Acknowledgements: none

Study Funding: The authors report no targeted funding

Disclosures: The authors report no disclosures relevant to the manuscript.
Abstract

A 31-year-old healthy white male experienced painless sequential vision loss. Brain imaging and laboratory investigations for infectious, inflammatory, and nutritional conditions, in addition to targeted genetic testing for Leber hereditary optic neuropathy (LHON), were all normal or negative. Despite systemic corticosteroid therapy and plasma exchange, vision continued to worsen. Eventually, mitochondrial whole genome sequencing was performed, which demonstrated a mutation at the 13513G>A position confirming the diagnosis of LHON. Three primary mutations (11778G>A, 14484T>C and 3460G>A) account for 90% of LHON cases, therefore it is important to consider whole genome mitochondrial sequencing in cases with a high index of clinical suspicion.
Section 1

A 31-year-old healthy white male was referred for painless sectoral cloudy vision in the left eye that occurred over several days after experiencing a similar episode four months prior in the right eye. He had initially presented to a local ophthalmologist a month after vision loss in the right eye. At that time, he was noted to have a visual acuity of 20/40 in the right eye and 20/20 in the left eye with a right relative afferent pupillary defect (RAPD), and was able to identify only 1/13 Ishihara pseudoisochromatic color plates in the right eye (13/13 in the left eye). The appearance of his optic discs and retinas were reported to be normal in both eyes. Automated visual field (AVF) testing demonstrated a superior field defect in the right eye and was normal in the left eye. There was no family history of unexplained visual loss, and he denied recreational drug use, but endorsed consuming two glasses of alcohol daily and smoking 1 pack of cigarettes per day. He ate a healthy varied diet.

Questions for consideration

What is the differential diagnosis for a RAPD and decreased color vision?

What further clinical testing would you order?

Section 2

A RAPD, detected by performing the swinging flashlight test, is typically indicative of an optic neuropathy. Dyschromatopsia or deficiency in color vision can be either congenital or acquired. The Ishihara pseudoisochromatic color plates are often used clinically to screen for acquired dyschromatopsia, but the original purpose of the test was to identify congenital red-green color blindness. The combination of unilateral visual loss, dyschromatopsia, and a RAPD is strongly suggestive of an optic neuropathy. The differential diagnosis of optic neuropathy is broad and can be considered under the general categories of toxic, metabolic, nutritional, ischemic, infectious, inflammatory, compressive/neoplastic, traumatic, and hereditary conditions (eTable 1). Being that he was healthy, was not taking any medications, and had no recent history of trauma, it was unlikely that he has a toxic, metabolic, nutritional, or traumatic
optic neuropathy. Ischemic optic neuropathy is also unlikely given his young age and lack of risk factors such as diabetes mellitus, hypertension, hyperlipidemia, or obstructive sleep apnea. If this were ischemic optic neuropathy, it would have to be posterior ischemic optic neuropathy due to the lack of optic disc edema, which is rare outside of surgery (i.e., prone position spine surgery), severe blood loss, or a vasculitic process. The absence of pain with eye movement decreases the likelihood of optic neuritis. Neuroimaging is needed to exclude an intrinsic optic nerve or intracranial compressive lesion.

Magnetic resonance imaging (MRI) of the brain and orbits with contrast was unremarkable with no optic nerve enhancement or periventricular white matter lesions. An extensive laboratory investigation for inflammatory, infectious, autoimmune conditions, and nutritional deficiencies were all normal or negative: erythrocyte sedimentation rate 4 mm/hr, C-reactive protein <5.0 m/dl (0.0-10.0 m/dl), angiotensin converting enzyme 18 U/L (9-67 U/L), C3 complement 123 mg/dl (88-165 mg/dl), C4 complement 27.7 mg/dl (14.0-44.0 mg/dl), vitamin B12 861 pg/ml (239-931 pg/ml), folate 15.9 ng/ml (>2.8 ng/ml), polymerase chain reaction for severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, herpes simplex virus types 1 and 2, John Cunningham virus, and serology for hepatitis A, hepatitis B, and hepatitis C virus, west Nile virus, Treponema pallidum, Borrelia burgdorferi, Tropheryma whipplei, rheumatoid factor, antinuclear antigen, anti-cyclic citrullinated peptide, double-stranded DNA, anti-Smith, proteinase-3, myeloperoxidase, and anticardiolipin. There were no monoclonal proteins detected on serum protein electrophoresis.

He was given the presumptive diagnosis of atypical retrobulbar optic neuritis by the local ophthalmologist and treated with 3 consecutive days (1 gram per day) of intravenous methylprednisolone followed by a 2-week oral prednisone taper.

Four months later, vision declined to 20/60 in the right eye and 20/40 left eye. Color vision was 1/13 in each eye. There was mild temporal optic disc pallor of the right eye and subtle hyperemia of the left optic disc. A repeat MRI brain and orbits with contrast was negative as was a cervical spine MRI.

Question for consideration
What further testing would you order?

Section 3

Because of the uncertainty regarding the etiology of visual loss, autoimmune and genetic causes were considered. Aquaporin 4 and myelin oligodendrocyte glycoprotein antibodies were negative. Lumbar puncture demonstrated opening pressure of 17 cm H$_2$O, leukocytes 2/μl, erythrocytes 0, glucose 95 mg/dl, protein 73 mg/dl, and absence of oligoclonal bands. Genetic testing for the 3 primary mitochondrial DNA (mtDNA) mutations (11778G>A, 14484T>C and 3460G>A) for Leber hereditary optic neuropathy (LHON) was negative.

He was again treated with 3 consecutive days of intravenous methylprednisolone in addition to concomitant plasma exchange for 7 days for presumed atypical optic neuritis without improvement in vision.

Approximately 5 months later, vision was 20/80 in both eyes. There was no RAPD. Color plates were 1/13 in each eye. Fundus examination demonstrated mild bilateral temporal optic disc pallor (Figure 1). AVF testing showed bilateral central scotomas (eFigure 1). Optical coherence tomography (OCT) demonstrated temporal and inferior peripapillary retinal nerve fiber (pRNFL) thinning in the right eye, and temporal pRNFL thinning in the left eye (Figure 2), as well as bilateral ganglion cell layer-inner plexiform layer (GCIPL) thinning (eFigure 2).

Question for Consideration

What is the clinical significance of the OCT findings?

What is the next step in the management?

Section 4

The OCT findings are consistent with bilateral optic neuropathies but are not specific in terms of determining the underlying etiology. However, the pattern of temporal pRNFL thinning
and GCLIPL thinning represent preferential loss of the papillomacular fibers, which are small caliber unmyelinated axons with a high concentration of mitochondria, that carry the accumulated retinal ganglion cell signal for central vision.4,5 The sequential painless visual loss due to optic nerve dysfunction in a young male with this optic nerve appearance, AVF findings and OCT pattern is most compatible with LHON despite the negative targeted mitochondrial testing. Mitochondrial whole genome sequencing demonstrated a mtDNA mutation at the 13513G>A position with a heteroplasmy level of 7%, confirming LHON. An electrocardiogram did not detect a cardiac arrhythmia.6

Discussion

LHON is a maternally inherited, mitochondrial disease that typically affects males with an 80-90% predominance and onset usually occurs between the ages of 15 and 35 years.6 The three primary mtDNA mutations (11778G>A, 14484T>C and 3460G>A) account for approximately 90% of LHON cases.6 The remaining 10% of cases are the result of point mutations at other mtDNA positions as well as within the nuclear DNA.7

The classic presentation of LHON is acute to subacute, painless, central visual loss that may progress over weeks to months. In up to 50% of cases the visual loss is bilateral and simultaneous, and in the other half it is sequential with second eye involvement usually within 3 months.6 Most patients develop dense central or cecocentral scotomas with visual acuity of 20/200 or worse.6 Depending on the symmetry of involvement, patients may have a RAPD. On funduscopic examination, the optic disc may demonstrate peripapillary telangiectasias and elevation of the pRNFL representing pseudo-optic disc edema. However, in some patients during the acute phase, the optic disc will appear normal. In the chronic phase (>3-6 months), optic disc pallor will develop, occasionally associated with optic disc cupping. OCT may demonstrate increased pRNFL thickness over the first 3-6 months, that subsequently becomes progressively thinner, especially in the temporal quadrant due to preferential involvement of the papillomacular bundle as mentioned above.4

In most instances, vision loss is permanent, but a minority of patients may experience some degree of visual recovery either in central visual acuity or development of openings within the visual field defect 6 to 12 months after the onset of visual loss. Positive prognostic
factors for visual improvement include the 14484T>C mutation and age of onset before 20 years of age. Environmental factors, particularly alcohol and tobacco smoking, have been associated with increased penetrance of LHON, therefore most patients are advised to eliminate alcohol and tobacco consumption.6

The 13513G>A variant is the most frequently reported mutation in the ND5 gene. The mutation has been most frequently associated with Leigh syndrome or mitochondrial encephalomyelopathy, lactic acidosis and stroke-like episodes (MELAS), but only rarely reported in patients with LHON.8-10 Genetic mutation load (i.e., heteroplasmy) is an important factor in the risk of vision loss in LHON related to a phenotypic expression threshold, but not necessarily to illness severity or multiorgan involvement.11 The ND5 protein, a hydrophobic polypeptide, is one of 45 subunits (38 of which are nuclear DNA encoded and 7 mtDNA encoded) of complex I within the mitochondrial electron transport chain. The ND5 gene is the largest of the mtDNA encoded complex I genes.12 ND5 synthesis is the rate-limiting step for the activity of complex I and therefore of oxidative phosphorylation, which explains why even low mutant loads can cause clinical manifestations.12 Significant mitochondrial impairment leads to the increased formation of reactive oxygen species and reduced adenosine triphosphate production culminating in cell apoptosis.11 This case illustrates the importance of whole genome mitochondrial sequencing when initial screening for the 3 common mtDNA pathogenic variants is negative.

Follow-up

It was recommended he start idebenone, a short-chain benzoquinone synthetic analogue of ubiquinone (coenzyme Q10), which is approved by the European Medicines Agency in the treatment of LHON; and has been shown to have a modest benefit in improving vision in some patients.13,14 He was also advised to eliminate alcohol and tobacco consumption.

Supplement -- http://links.lww.com/WNL/B664
References

Figure Legends:
Figure 1: Color fundus photographs showing bilateral temporal optic disc pallor.

Figure 2: Optical coherence tomography peripapillary retinal nerve fiber layer analysis demonstrates temporal and inferior thinning of the right eye (average thickness 69 µm) and temporal thinning of the left eye (average thickness 84 µm).
Appendix 1. Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake H Fortes, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Major role in drafting the manuscript and video</td>
</tr>
<tr>
<td>John J. Chen, MD, PhD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>M. Tariq Bhatti, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Design and conceptualized study; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
Clinical Reasoning: A 31-Year-Old Man With Sequential Vision Loss
Blake Fortes, John J Chen and M. Tariq Bhatti
Neurology published online November 19, 2021
DOI 10.1212/WNL.000000000013084

This information is current as of November 19, 2021

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/content/early/2021/11/18/WNL.000000000013084.full</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Epilepsy/Seizures http://n.neurology.org/cgi/collection/all_epilepsy_seizures</td>
</tr>
<tr>
<td></td>
<td>Status epilepticus http://n.neurology.org/cgi/collection/status_epilepticus</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>