Teaching NeuroImage: Fasting EEG in Glucose Transporter-1 Deficiency Syndrome

Author(s):
Hassan Imtiaz, MD1; Afra Can, MD1; Daniela Tapos, MD1; Amanda Weber, DO1

Corresponding Author:
Hassan Imtiaz
dr.hassanimtiaz@hotmail.com

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
A 12 year old male presented for evaluation of chorea induced by fasting and exercise. EEG, brain MRI, spectroscopy, metabolic and microarray evaluations were unremarkable. Fasting EEG showed diffuse spike-wave discharges with postprandial normalization (Figure 1); chorea was not captured. Genetic testing confirmed a pathogenic SLC2A1 mutation consistent with Glucose transporter-1 (GLUT-1) deficiency syndrome, which is uniquely responsive to ketogenic diet. EEG findings in this syndrome may include multifocal or generalized spikes, with postprandial improvement (1, 2). This case suggests a supportive role for fasting EEG in the diagnosis of Glucose transporter-1 deficiency syndrome, but the sensitivity and specificity remain unclear.
References:


Ethical Compliance Statement:

The authors confirm that the approval of an institutional review board was not required for this work. We confirm that the inform consent was obtained from the parents. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this work is consistent with those guidelines.
Figure 1: EEG during fasting (A, B) showing diffuse, poorly-formed 3-4 Hz spike-wave discharges. EEG after meal (C, D) showing background normalization. This EEG is shown on a 15-second epoch with a sensitivity of 7 µV in a longitudinal bipolar montage, left over right.
Teaching NeuroImage: Fasting EEG in Glucose Transporter-1 Deficiency Syndrome
Hassan Imtiaz, Afra Can, Daniela Tapos, et al.
Neurology published online December 3, 2021
DOI 10.1212/WNL.0000000000013143

This information is current as of December 3, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/12/02/WNL.0000000000013143.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All clinical neurophysiology
http://n.neurology.org/cgi/collection/all_clinical_neurophysiology
Chorea
http://n.neurology.org/cgi/collection/chorea
EEG; see Epilepsy/Seizures
http://n.neurology.org/cgi/collection/eeg_see_epilepsy-seizures
Epilepsy monitoring
http://n.neurology.org/cgi/collection/epilepsy_monitoring_
Gait disorders/ataxia
http://n.neurology.org/cgi/collection/gait_disorders_ataxia

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.