Disease-Modifying Antirheumatic Drugs and Risk of Parkinson Disease: Nested Case-Control Study of People With Rheumatoid Arthritis

Author(s):
Anne Paakinaho, MSc Pharm¹; Marjaana Koponen, PhD Pharm¹,²; Miia Tiidisonen, PhD Pharm¹; Markku Kauppi, MD, PhD³,⁴; Sirpa Hartikainen, MD, PhD¹; Anna-Maija Tolppanen, PhD¹

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Corresponding Author:
Anne Paakinaho
anne.paakinaho@uef.fi

Affiliation Information for All Authors: 1. School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; 2. Center for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; 3. Department of Rheumatology, Päijät-Häme Central Hospital, 15850 Lahti, Finland; 4. Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland

Contributions:
Anne Paakinaho: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Marjaana Koponen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Miia Tiihonen: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Markku Kauppi: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Sirpa Hartikainen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Anna-Maija Tolppanen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Number of characters in title: 133

Abstract Word count: 349

Word count of main text: 3847

References: 27

Figures: 1

Tables: 3

Supplemental: RECORD checklist, eTable1, eTable2, eTable3, eFigure1, Response to reviewers, Manuscript revision with tracked changes

Statistical Analysis performed by: Performed by first author Anne Paakinaho (MSc) and supervised by Marjaana Koponen (PhD) and Anna-Maija Tolppanen (PhD)

Study Funding: This project was funded by the Michael J Fox Foundation for Parkinson’s research (grant MJFF-008834 to Anna-Maija Tolppanen, which paid salary for Anne Paakinaho and Marjaana Koponen).

Disclosures: The authors report no disclosures relevant to the manuscript.

Abstract

Background

Epidemiological studies have suggested a link between rheumatoid arthritis and Parkinson’s disease (PD). Disease-modifying anti-rheumatic drugs (DMARDs) might explain this association.

Objective

To evaluate the association between DMARDs and risk of PD in persons with rheumatoid arthritis.

Methods

Nested nationwide case-control study was conducted within the Finnish Parkinson’s disease (FINPARK) cohort that includes 22,189 Finnish persons with clinically verified PD diagnosed in 1996-2015. The cases had recorded diagnosis of PD in the Special Reimbursement Register and had no exclusion diagnoses whose symptoms may be confused with PD within two years of PD diagnosis. This study included cases with PD diagnosed during 1999-2015.
and rheumatoid arthritis diagnosed >3 years before PD. Rheumatoid arthritis was identified using Finnish Care Register for Health Care and Special Reimbursement Register. Cases were matched with up to seven control persons by age, sex, duration of rheumatoid arthritis and region. DMARDs were categorised into five classes and data on purchased prescriptions was identified from the Prescription Register since 1995. Associations were studied with conditional logistic regression adjusted for confounders.

Results

Altogether 315 cases with PD and 1,571 matched controls were included. Majority (>60%) were women and median duration of rheumatoid arthritis on matching date was 11.6 years for controls and 12.6 years for cases. Use of DMARDs was not associated with risk of PD with three-year lag period applied between exposure and outcome, except chloroquine/hydroxychloroquine which associated with decreased risk (adjusted odds ratio 0.74; 95% confidence interval 0.56-0.97). Other DMARDs, including sulfasalazine, methotrexate, gold preparations and immunosuppressants, were not associated with PD.

Discussion

Our results suggest that the lower risk of PD in people with rheumatoid arthritis is not explained by DMARD use as these drugs in general did not modify the risk of PD among persons with rheumatoid arthritis. Association between chloroquine/hydroxychloroquine and lower risk of PD as well as the possible underlying mechanisms should be further investigated.
Classification of evidence: This study provides Class II evidence that in individuals with rheumatoid arthritis using DMARDs, only chloroquine/hydroxychloroquine was associated with a potentially decreased risk of developing PD (adjusted OR 0.74, 95% CI 0.56-0.97).
Introduction

Rheumatoid arthritis has been linked to lower risk of Parkinson’s disease (PD)\(^1\)\(^-\)\(^3\), although some studies have also observed an increased risk of PD in people with rheumatoid arthritis\(^4\), or no association between rheumatoid arthritis and PD\(^5\).

One suggested explanation for the protective association are medications used to treat rheumatoid arthritis\(^1\). Disease-modifying anti-rheumatic drugs (DMARDs), such as methotrexate and sulfasalazine, inhibit the rheumatic inflammation and progression of structural joint damage\(^6\), and they could modify the risk of PD by interfering with immune system dysfunction, which has been suggested to be present in PD\(^7\). However, there is very little research on the association of DMARDs with risk of PD. Although one study demonstrated lower risk of PD in users and nonusers of DMARDs with rheumatoid arthritis compared to people without rheumatoid arthritis\(^1\), that study did not compare the risk between DMARD users and nonusers with rheumatoid arthritis. A case-control study which investigated several DMARDs reported that use of either azathioprine, leflunomide or mycophenolate were associated with lower risk of PD\(^8\).

The primary research question of our study is whether use of different DMARDs is associated with risk of PD. We investigated this in a nested nationwide case-control study restricted to persons with rheumatoid arthritis diagnosed at least 3 years before clinically verified PD. This restriction of study population allowed us to minimize confounding by indication of DMARD treatment. To control for increased contact with healthcare professionals due to diagnostic process of PD, which could differentially affect the exposure in cases, we applied a three-year lag period between DMARD use and PD diagnosis. In addition, due to the long onset period of PD, it is unlikely that DMARDs initiated within close proximity to PD diagnosis would impact the risk.
Methods

FINPARK study population

A nested case-control study was conducted within the Finnish Parkinson’s disease (FINPARK) cohort that contains all community-dwelling Finnish persons who received special reimbursement for PD drugs in 1996-2015 (N=22,189). These persons were identified using the Special Reimbursement Register which includes information on entitlements to higher reimbursements for drugs because of chronic diseases. PD diagnosis was based on United Kingdom Parkinson’s disease Society Brain Bank criteria and exclusion diagnoses for FINPARK cohort has been reported previously. For every person with PD, up to 7 comparison persons without PD were identified from the Social Insurance Institution (SII) database covering all residents and they were matched for age, sex, and region of residence (N=148,009). Each Finnish resident is given a unique personal identification number which enables data linkage across several registers. The FINPARK study has been described in detail previously.

Identification of cases and controls for this study

Formation of study population is described in Figure 1. Persons diagnosed with PD in 1999-2015 (N=19,568) were included in this study as drug exposure data were available since 1995 and we used a three-year lag period in exposure assessment. To control for confounding by indication we restricted the study to people who had been diagnosed with rheumatoid arthritis at least three years before PD diagnosis. Rheumatoid arthritis was defined from the Finnish Care Register for Health Care (1987-2012) and Special Reimbursement Register (1972-2012) using International Classification of Diseases (ICD) ICD-
9 and ICD-10 codes as described in eTable 1. In addition, ICD-8 codes (1972-1986) were used to get the earliest diagnosis date of rheumatoid arthritis for those who had rheumatoid arthritis based on ICD-9 or ICD-10 codes. Final diagnosis date for rheumatoid arthritis was defined either as the earliest date of the hospitalization, specialized healthcare outpatient visit or as the first date of the entitlement to reimbursement for drugs used to treat rheumatoid arthritis, whichever occurred first.

For each PD case with rheumatoid arthritis (n=318), up to seven controls without PD but with rheumatoid arthritis were matched from the controls of the FINPARK study. Date of the PD diagnosis was defined as the index date. Controls were matched based on sex, age (+/- 2 years) on index date, time since rheumatoid arthritis diagnosis on index date (+/- 2 years) and university hospital district. If no controls were identified from the same district, controls were allowed to come from neighboring district. Same exclusion criteria were applied for cases and controls. In addition, controls were not allowed to have diagnosis of Dementia in Parkinson's disease (ICD-10 code F02.3). The final study population included 315 cases and 1,571 controls. Three cases without matched controls were excluded.

Drug exposure

Data on DMARD and corticosteroid purchases were extracted from the Prescription register since 1995 until the index date. The Prescription register includes data on all reimbursed drug purchases, while drug use during hospital stays or in public nursing homes is not recorded in this register. Drugs are categorized according to Anatomical Therapeutic Chemical (ATC) classification system. Drug use was defined based on ATC codes (eTable 2) and DMARDs were categorized as follows: sulfasalazine (A07EC01), chloroquine (P01BA01) or hydroxychloroquine (P01BA02), gold preparations (M01CB) including auranofin and...
sodium aurothiomalate and immunosuppressants (L04A) which consist of azathioprine, certolizumab pegol, ciclosporin, mycophenolic acid and biological DMARDs (bDMARDs): abatacept, adalimumab, anakinra, etanercept, golimumab and leflunomide. Methotrexate (L04AX03) was studied separately from immunosuppressants throughout the study due to its common usage in the treatment of rheumatoid arthritis. Due to small number of bDMARD users during the study period, they were combined with immunosuppressants in the main analysis. In addition, we performed sensitivity analysis investigating bDMARDs as a separate category.

Corticosteroids (H02AB) covered prednisolone, prednisone, and methylprednisolone. Dexamethasone was excluded due to low amount of reimbursed purchases. All the above-mentioned drugs are available only as prescription drugs and all reimbursed purchases can be reliably identified from the register. The first date of purchase was determined for each drug or drug group for each person and person was defined as user if there was at least one purchase.

To control for biases caused by 1) prodromal symptoms or ongoing diagnosis process of PD affecting drug exposure, or 2) newly diagnosed rheumatoid arthritis or changes in rheumatoid arthritis pharmacotherapy increasing likelihood of being diagnosed with PD, we applied a three-year lag period for assessing drug exposure. Three years was chosen based on our previous study demonstrating that incidence of muscle relaxants, an indicator of motor symptoms of PD, occurs within this three-year period in FINPARK cohort. In the main analysis drug use was determined prior to three-year lag period indicating that exposure had occurred at least three years before index date. Time before lag period refers
to exposure assessment period. Additionally, drug exposure was measured within lag period only (within three years of index date) or without lag period (ever before index date). Furthermore, exposure histories based on the different types of DMARDs used during the exposure assessment period were derived.

Covariates

Comorbidities that were considered to be associated with exposure and outcome were used as covariates (eTable 3). History of asthma or chronic obstructive pulmonary disease (COPD), stroke, diabetes, cardiovascular diseases including any of the following: hypertension, coronary artery disease, chronic heart failure and chronic arrhythmias, substance abuse and head injury were identified using the Special Reimbursement Register, Care Register for Health Care Register or Prescription Register. Cancer history was derived from Cancer Register using ICD-10 codes from IARC CRG Tools. All covariates were defined until the start of the three-year lag period and ever before index date.

Statistical analyses

Characteristics of cases and controls were compared with χ^2-test for categorical variables. For continuous variables, t-test was applied for normally distributed and Mann-Whitney U test for non-normally distributed data. Conditional logistic regression was used to estimate the unadjusted and adjusted odds ratios (aORs) with 95% confidence intervals (CIs) for the association between exposures and PD. Analyses were conducted with different lag periods i.e., without lag period, with three-year lag and use only during the three-year lag period. We analyzed the association between individual DMARD categories (use vs. no use) to assess the association of specific DMARDs. To account for changes in pharmacotherapy for
rheumatoid arthritis (i.e., one person using more than just one type of DMARDs during the exposure assessment period), we grouped the persons based on the types of drugs they had purchased (sulfasalazine, methotrexate, chloroquine/hydroxychloroquine, gold preparations and immunosuppressants). The association between different exposure histories for DMARDs was investigated in comparison to most common exposure type category. Only categories with >5% frequency were reported.

The minimum detectable ORs for different exposure prevalence levels among controls are shown in eFigure 1. We had 80% power to detect ORs ≥1.41 (or ≤0.71) with exposure prevalence of 50% and ORs ≥1.92 (or ≤0.52) with exposure prevalence of 5% (alpha=0.05).

Analyses were performed with SAS v9.4 (SAS Institute, Cary, North Carolina). Power calculations were performed with Stata MP14.0 using power mcc-function.

Standard Protocol Approvals, Registrations, and Patient Consents
According to Finnish legislation, ethics committee approval or informed consent is not needed, because included persons cannot be identified due to pseudonymised register data, and the persons were not contacted.

Data availability
The data used to conduct this research is not publicly available due to restrictions by the register maintainers and Finnish legislation. However, the data are available from the corresponding author, provided that appropriate permission of the register maintainers is sought and demonstrated.
Results

The characteristics of cases (N=315) and matched controls (N=1,571) are described in Table 1. The age ranged between 46 and 93 years (mean 73.1 years). Most of the study participants were women. Median duration of rheumatoid arthritis on index date was 11.6 years for controls and 12.6 years for cases, respectively. Prevalence of different comorbidities was comparable between PD cases and controls and cardiovascular diseases were the most common comorbidities.

Use of DMARDs and corticosteroids in different time periods are summarized in Table 2. The three most commonly used DMARDs in both cases and controls were sulfasalazine, methotrexate and chloroquine/hydroxychloroquine (Table 2). Gold preparations were used by approximately one quarter of cases and controls during exposure assessment period and immunosuppressant were the least commonly used DMARD. Corticosteroids were used by nearly two thirds of cases and controls during exposure assessment period.

Use of DMARDs or corticosteroids during exposure assessment was not associated with risk of PD except for use of chloroquine/hydroxychloroquine which associated with decreased risk (aOR 0.74; 95% CI 0.56-0.97) (Table 2). The use of bDMARDs was infrequent in the study period, with less than 3% of cases and controls having used before the three-year lag time. They were not associated with risk of PD (aOR 0.98; 95% CI 0.46-2.09).

When any use before the index date was considered, regardless of whether it was initiated during actual exposure assessment or during lag time, the associations were similar. When initiations in the three-year lag period were considered, no associations were observed.

The negative association of chloroquine/hydroxychloroquine was stronger when any use before the index date was considered (aOR 0.69; 95% CI 0.53-0.89) than in the main analysis.
with exposure that had occurred before the three-year lag period (aOR 0.74; 95% CI 0.56-0.97).

When changes in DMARDs during exposure assessment period (i.e., exposure histories) were considered, the most common exposure type was sulfasalazine, with 10% prevalence in both cases and controls (Table 3). Second most common was the combination of chloroquine/hydroxychloroquine, methotrexate, and sulfasalazine. The frequency of other types was <10% in cases and controls. No associations were observed between different exposure histories for DMARDs and PD risk when adjusted with different covariates (Table 3).

Classification of Evidence: This study provides Class II evidence that in individuals with rheumatoid arthritis using DMARDs, only chloroquine/hydroxychloroquine was associated with a potentially decreased risk of developing PD (adjusted OR 0.74, 95% CI 0.56-0.97).

Discussion

Studies on the association between DMARDs and risk of PD in population restricted to rheumatoid arthritis are lacking, although they would aid in understanding whether the inverse association between rheumatoid arthritis and PD is explained by DMARD-treatment of rheumatoid arthritis. Our nationwide nested case-control study of people with rheumatoid arthritis found no association between the use of DMARDs or corticosteroids and risk of PD on a general level. However, the use of chloroquine/hydroxychloroquine was associated with lower risk of PD, even when the analyses were restricted to exposure that had occurred at least three years before PD diagnosis.
These results extend the findings of earlier studies which have implied the role of immune system in PD pathogenesis. Genome-wide association studies have shown that autoimmune diseases, including rheumatoid arthritis, and PD share genetic pathways. Lower risk of PD has been observed in people with rheumatoid arthritis in some but not all studies, and similarly conflicting findings have been reported for systemic lupus erythematosus, another autoimmune disease. Given these inconsistent findings, it is difficult to conclude whether autoimmune diseases alter the PD pathophysiology and to what extent. However, the evidence of involvement of immune system dysfunction in PD pathogenesis supports the presumption that long-term use of DMARDs, which have anti-inflammatory properties, could explain the reduced risk of PD in rheumatoid arthritis. Surprisingly, the number of pharmacoepidemiological studies on DMARDs is still small.

Differences in our study design prevent direct comparison to earlier studies which have mainly studied how rheumatoid arthritis as a disease is associated with risk of PD or how DMARDs are associated with risk of PD without restricting study population to persons with rheumatoid arthritis. We wanted to focus on DMARDs and avoid confounding by indication by restricting study to people with rheumatoid arthritis. This allowed us to evaluate the association of DMARDs and PD instead of rheumatoid arthritis and PD. Secondly, we considered drug exposure that had occurred at least three years before PD diagnosis, since PD has long latency period before actual diagnosis and potentially increased contact with healthcare, as evident from the initiation of muscle relaxants already three years before PD diagnosis, can also affect drug exposure. By contrast, previous case-control study applied only one-year lag between drug exposure and PD diagnosis. We also conducted sensitivity analyses considering exposure that had occurred until PD diagnosis and during the lag period. The results of these additional analyses were in line with the main analyses.
In Finland, we have a long-lasting tradition to aim to remission in the treatment of rheumatoid arthritis. Thus, DMARDs have been used actively during the whole study period. Sulfasalazine was the most used DMARD in our study followed by methotrexate and chloroquine/hydroxychloroquine. These three DMARDs, so called Triple therapy, have been the recommended treatment according to Finnish guidelines for rheumatoid arthritis. In addition to individual drugs, we assessed whether exposure histories for different types of DMARDs at least three years before PD diagnosis would differ in the risk of PD but observed no differences compared to sulfasalazine.

Some of the DMARDs have been previously associated with reduced risk of PD. In an earlier case-control study, users of azathioprine, leflunomide or mycophenolate, had reduced risk of PD compared to nonusers with or without one-year lag between drug exposure and outcome. However, we did not observe risk reduction for immunosuppressants class in which these drugs, along with bDMARDs, were defined in our study. In a cohort study, people with rheumatoid arthritis had lower risk of PD than those without rheumatoid arthritis regardless of DMARD use. The relative risk reduction was similar in DMARD users and nonusers with rheumatoid arthritis in comparison to persons without rheumatoid arthritis, meaning that use of DMARDs did not explain the protective association of rheumatoid arthritis. Despite differences in study setting, this reflects our results since in general we found no association between DMARDs use and risk of PD among people with rheumatoid arthritis.

In a previous case-control study, corticosteroids were associated with lower risk of PD when the exposure had occurred at least one year before or up to PD diagnosis while we did not observe association between corticosteroids and PD. One explanation for our null result might be that despite their immunosuppressive effects, corticosteroids are aimed to be...
used with low dose and only for relatively short-term in the treatment of rheumatoid arthritis due to their possible adverse effects in long-term use, such as osteoporosis15. It is possible to reach remission with active use of DMARDs, even without long-term use of systemic corticosteroids.

Our finding on the association between chloroquine/hydroxychloroquine, and lower risk of PD is, however, consistent with the previous case-control study8, which reported a protective association for hydroxychloroquine when any exposure before PD diagnosis was considered (relative risk=0.77; 95% CI 0.65-0.90), and a weaker association when exposure occurring at least one year before the outcome was investigated (relative risk=0.83; 95% CI 0.68-1.00). This attenuation may imply that the association in that study was partially due to increased healthcare contact in close proximity to PD diagnosis. Our findings provide additional support to this earlier observation as we were able to use longer lag time in exposure assessment.

Neuroprotective potential of chloroquine and hydroxychloroquine has been speculated previously16,17. Both chloroquine and hydroxychloroquine, interfere with lysosomal activity and autophagy, can inhibit both innate and adaptive immune processes and reduce production of inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor (TNF)18. These immunomodulatory effects could have a role in modulating inflammatory processes in PD. However, methotrexate, the first-line DMARD for rheumatoid arthritis, that is more powerful immunosuppressant than hydroxychloroquine19, was not associated with risk of PD in our study. Therefore, the protective association of chloroquine/hydroxychloroquine might be explained by other reasons than its immunosuppressive effects. Hydroxychloroquine has been implied to have pleiotropic effects, as it was recently shown to improve lipid profiles and reduce diabetes incidence in
rheumatoid arthritis20, a population in increased risk of cardiovascular diseases21. It is possible that the effects on metabolic and cardiovascular risk factors22 might partly explain our findings. It should be noted that hydroxychloroquine is better tolerated than chloroquine, and thus it is nowadays more commonly used in the treatment of rheumatoid arthritis23. Chloroquine was included in our study because we used drug exposure data since 1995.

The protective association of chloroquine/hydroxychloroquine is also supported by experimental models of PD; chloroquine protected dopaminergic (DA) neurons against 6-hydroxydopamine induced neurotoxicity17 and hydroxychloroquine ameliorated motor functions of rotenone-induced parkinsonian rats in behavioral tests16. Neuroprotective effects of these drugs was suggested to be mediated through orphan nuclear receptor Nurr1, which is important in the development and maintenance of midbrain dopaminergic neurons24 and whose expression was activated by both chloroquine17 and hydroxychloroquine16. In terms of other neurodegenerative diseases, hydroxychloroquine did not, however, slow the progression of dementia in persons with Alzheimer’s disease compared to the placebo in double-blind clinical trial25.

Our study has several strengths. Definition of PD is based on clinically verified diagnosis. Using large nationwide registries, we could restrict the study population on persons who have the indication to use DMARDs thereby controlling for confounding by indication. Due to long, up to 17 years, exposure assessment time we were able to apply three-year lag period. Short lag period between drug exposure and outcome of PD has been a key limitation in previous studies. If drug exposure is measured too close to the diagnosis of PD, it is more likely to reflect different contact density with prescribers than actual risk factor.
Further, as PD progresses slowly over time, immediate exposure just before diagnosis is unlikely to have significant effect on PD pathophysiology.

Our study was based on data on purchased drugs in which case medication adherence is based on presumption. On the other hand, all the drugs included are only available as prescription drugs which minimizes classification bias. DMARDs administered in hospitals, for example infliximab, are not included in the prescription register. However, these drugs are never used as the first, or only, DMARD and every patient getting infliximab is also treated with other DMARD(s). Therefore, the drugs administered in hospital should not have a major impact on our results.

Although we had nationwide data, restriction of analyses to those with rheumatoid arthritis and at least three years of exposure assessment decreased the sample size. This means that we had limited power to detect weak associations. However, the power issue unlikely explains the null findings, as we were able to observe the association between chloroquine/hydroxychloroquine and PD risk and the point estimates for other DMARDs in the main analyses were close to the null. Further, based on the exposure prevalence we do not think that a clinically relevant signal was missed because of lack of power, and restriction of study population aided us to avoid indication bias. We did not perform dose-response or duration of treatment analyses due to limitations posed by the sample size. Some of the newer immunosuppressants included in our study, mainly bDMARDs such as golimumab, have entered the market at the end of the study period, therefore they have been used in lesser extent compared to older DMARDs, such as sulfasalazine, methotrexate, and chloroquine/hydroxychloroquine. Findings of additional analysis regarding bDMARDs should be interpreted cautiously due to limited number of users in our study.
A possible limitation of our study is the lack of information on severity of rheumatoid arthritis which could affect chosen pharmacotherapy and have differential impact on developing PD regardless of DMARDs use. Our data included both seropositive and seronegative rheumatoid arthritis. This is common approach in register-based studies on rheumatoid arthritis, and unlikely to have major impact on our results.

The sex distribution of our study population may appear surprising considering that PD is more common in men26. However, rheumatoid arthritis is more common in women than in men15, which explains the sex distribution in our study. As the earlier studies on rheumatoid arthritis or other autoimmune rheumatic diseases and the risk of PD1,4 have reported sex distribution comparable to our study and the findings on the association between rheumatoid arthritis and PD have been inconsistent, it is difficult to speculate whether sex has implications for the analyses. We matched cases and controls by sex and thus our results are unlikely explained by sex.

Linkage of several registers enable to account for multiple confounding factors although adjustment with comorbidities did not change the results. We lacked data on smoking, which has been associated with an increased risk of rheumatoid arthritis15 and oppositely with decreased risk of PD27. However, we used smoking-associated comorbidities, including cancer from Cancer registry, as proxies, but residual confounding is still possible. Additionally, the association between chloroquine/hydroxychloroquine and lower risk of PD can be confounded by another variable that was not identified in our study. The association may also be explained by survival bias: both chloroquine and hydroxychloroquine are old drugs and persons treated with them, especially in monotherapy, might have less severe rheumatoid arthritis and better overall health status than those treated with other DMARDs. However, hydroxychloroquine is also included in the drug-combination with
methotrexate and sulfasalazine which is widely used also on moderate and severe rheumatoid arthritis.

In conclusion, the hypothesis that decreased risk of PD among rheumatoid arthritis patients could be explained by use of DMARDs was not confirmed in our study. Further studies on newer DMARDs, especially on bDMARDs such as TNF-α inhibitors and target specific DMARDs (JAK inhibitors), and assessment of dose-response relations between DMARDs and risk of PD are needed. The potential ability of chloroquine/hydroxychloroquine to modify the PD disease process should be studied further.
Appendix 1
Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne Paakinaho, MSc (Pharm)</td>
<td>School of Pharmacy, University of Eastern Finland, Kuopio</td>
<td>Design and conceptualization of the study, analysis and interpretation of the data, drafting and revising the manuscript. Approval of the submitted version.</td>
</tr>
<tr>
<td>Marjaana Koponen, PhD (Pharm)</td>
<td>School of Pharmacy, University of Eastern Finland, Kuopio</td>
<td>Design and conceptualization of the study, data preprocessing and analysis supervision, revising the manuscript. Approval of the submitted version.</td>
</tr>
<tr>
<td>Miia Tiihonen, PhD (Pharm)</td>
<td>School of Pharmacy, University of Eastern Finland, Kuopio</td>
<td>Design and conceptualization of the study, interpretation of the data, revising the manuscript. Approval of the submitted version.</td>
</tr>
<tr>
<td>Markku Kauppi, MD, PhD, Professor of rheumatology</td>
<td>Department of rheumatology, Päijät-Häme Central Hospital, Lahti and Clinicum, Faculty of Medicine, University of Helsinki, Helsinki</td>
<td>Interpretation of the data, revising the manuscript. Approval of the submitted version.</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Contributions</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sirpa Hartikainen, MD, PhD</td>
<td>School of Pharmacy, University of Eastern Finland, Kuopio</td>
<td>Design and conceptualization of the study, interpretation of the data, revising the manuscript. Approval of the submitted version.</td>
</tr>
<tr>
<td>Anna-Maija Tolppanen, PhD</td>
<td>School of Pharmacy, University of Eastern Finland, Kuopio</td>
<td>Design and conceptualization of the study, interpretation of the data, revising the manuscript. Approval of the submitted version.</td>
</tr>
</tbody>
</table>
References

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084152766&doi=10.1038%2fs41582-020-0344-
doi:10.1038/s41582-020-0344-4.

Immunosuppressants and risk of Parkinson disease. *Ann Clin Transl Neurol.* 2018;5(7):870-
875. doi:10.1002/acn3.580 [doi].

Parkinson's disease: a clinico-pathological study of 100 cases. *J Neurol Neurosurg Psychiatry.*

10. Hentilä E, Tiihonen M, Taipale H, Hartikainen S, Tolpanen AM. Incidence of
antidepressant use among community dwellers with and without Parkinson’s disease - a
[doi].

[doi].

Disease and Autoimmune Diseases. *JAMA Neurol.* 2017;74(7):780-792.

Figure 1. Flow chart of formation of Parkinson disease (PD) cases and controls.

*age ± years, sex, time since rheumatoid arthritis diagnosis ± 2 years, university hospital district
Table 1. Description of Parkinson’s disease (PD) cases and matched controls. Data are given as mean (SD) for age, median (IQR) for duration of rheumatoid arthritis and n (%) for other variables.

<table>
<thead>
<tr>
<th></th>
<th>Controls N=1,571</th>
<th>PD cases N=315</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at PD diagnosis (years)</td>
<td>73.1 (7.7)</td>
<td>73.1 (8.2)</td>
<td>1.00a</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>539 (34.3)</td>
<td>116 (36.8)</td>
<td>0.39b</td>
</tr>
<tr>
<td>Women</td>
<td>1032 (65.7)</td>
<td>199 (63.2)</td>
<td></td>
</tr>
<tr>
<td>Duration of rheumatoid arthritis on index date, median years (IQR)</td>
<td>11.6 (7.5–19.2)</td>
<td>12.6 (8.4–20.5)</td>
<td>0.08c</td>
</tr>
<tr>
<td>University hospital district on index date</td>
<td></td>
<td></td>
<td>0.36b</td>
</tr>
<tr>
<td>Helsinki</td>
<td>409 (26.0)</td>
<td>74 (23.5)</td>
<td></td>
</tr>
<tr>
<td>Tampere</td>
<td>363 (23.1)</td>
<td>79 (25.1)</td>
<td></td>
</tr>
<tr>
<td>Kuopio</td>
<td>348 (22.2)</td>
<td>61 (19.4)</td>
<td></td>
</tr>
<tr>
<td>Oulu</td>
<td>227 (14.5)</td>
<td>57 (18.1)</td>
<td></td>
</tr>
<tr>
<td>Turku</td>
<td>224 (14.3)</td>
<td>44 (14.0)</td>
<td></td>
</tr>
<tr>
<td>Covariates before three-year lag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>639 (40.7)</td>
<td>136 (43.2)</td>
<td>0.41b</td>
</tr>
<tr>
<td>Asthma or COPD</td>
<td>198 (12.6)</td>
<td>34 (10.8)</td>
<td>0.37b</td>
</tr>
<tr>
<td>Cancer history</td>
<td>134 (8.5)</td>
<td>24 (7.6)</td>
<td>0.59b</td>
</tr>
<tr>
<td>Diabetes</td>
<td>132 (8.4)</td>
<td>34 (10.8)</td>
<td>0.17b</td>
</tr>
<tr>
<td>Head injury</td>
<td>80 (5.1)</td>
<td>13 (4.1)</td>
<td>0.47b</td>
</tr>
<tr>
<td>Stroke</td>
<td>54 (3.4)</td>
<td>10 (3.2)</td>
<td>0.81b</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>36 (2.3)</td>
<td>4 (1.3)</td>
<td>0.25b</td>
</tr>
</tbody>
</table>

a t-test, b Chi-Square test, c Mann-Whitney U test

COPD=chronic obstructive pulmonary disease, IQR=interquartile range, PD=Parkinson’s disease
<table>
<thead>
<tr>
<th>Drug or drug group</th>
<th>Controls N=1571</th>
<th>PD cases N=315</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted* OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use before three-year lag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>794 (50.5)</td>
<td>161 (51.1)</td>
<td>0.85 1.02 (0.79-1.33)</td>
<td>1.01 (0.78-1.32)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>751 (47.8)</td>
<td>163 (51.8)</td>
<td>0.20 1.17 (0.90-1.52)</td>
<td>1.17 (0.90-1.52)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine</td>
<td>704 (44.8)</td>
<td>118 (37.5)</td>
<td>0.016 0.73 (0.56-0.96)</td>
<td>0.74 (0.56-0.97)</td>
</tr>
<tr>
<td>Gold preparations</td>
<td>388 (24.7)</td>
<td>84 (26.7)</td>
<td>0.46 1.09 (0.82-1.45)</td>
<td>1.11 (0.83-1.47)</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>231 (14.7)</td>
<td>53 (16.8)</td>
<td>0.34 1.07 (0.76-1.53)</td>
<td>1.06 (0.75-1.51)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>1062 (67.6)</td>
<td>210 (66.7)</td>
<td>0.75 0.96 (0.73-1.26)</td>
<td>0.98 (0.74-1.29)</td>
</tr>
<tr>
<td>Use only in three-year lag period</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>52 (3.3)</td>
<td>9 (2.9)</td>
<td>0.68 0.90 (0.43-1.87)</td>
<td>0.91 (0.44-1.91)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>102 (6.5)</td>
<td>19 (6.0)</td>
<td>0.76 0.98 (0.59-1.63)</td>
<td>0.98 (0.59-1.64)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine</td>
<td>90 (5.7)</td>
<td>10 (3.2)</td>
<td>0.06 0.57 (0.29-1.12)</td>
<td>0.57 (0.29-1.13)</td>
</tr>
<tr>
<td>Gold preparations</td>
<td>27 (1.7)</td>
<td>3 (1.0)</td>
<td>0.32 0.47 (0.14-1.59)</td>
<td>0.46 (0.13-1.56)</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>68 (4.3)</td>
<td>13 (4.1)</td>
<td>0.87 1.01 (0.55-1.88)</td>
<td>1.03 (0.55-1.91)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>120 (7.6)</td>
<td>18 (5.7)</td>
<td>0.23 0.76 (0.45-1.28)</td>
<td>0.75 (0.44-1.26)</td>
</tr>
<tr>
<td>Use ever before index date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>846 (53.9)</td>
<td>170 (54.0)</td>
<td>0.97 1.01 (0.78-1.31)</td>
<td>1.01 (0.77-1.31)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>853 (54.3)</td>
<td>182 (57.8)</td>
<td>0.26 1.16 (0.90-1.51)</td>
<td>1.18 (0.91-1.53)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine</td>
<td>794 (50.5)</td>
<td>128 (40.6)</td>
<td>0.001 0.67 (0.51-0.87)</td>
<td>0.69 (0.53-0.89)</td>
</tr>
<tr>
<td>Gold preparations</td>
<td>415 (26.4)</td>
<td>87 (27.6)</td>
<td>0.66 1.03 (0.78-1.37)</td>
<td>1.05 (0.79-1.39)</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>299 (19.0)</td>
<td>66 (21.0)</td>
<td>0.43 1.06 (0.77-1.46)</td>
<td>1.06 (0.77-1.46)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>1182 (75.2)</td>
<td>228 (72.4)</td>
<td>0.29 0.87 (0.66-1.16)</td>
<td>0.90 (0.68-1.20)</td>
</tr>
</tbody>
</table>
*Asthma or chronic obstructive pulmonary disease (COPD), cancer history, cardiovascular diseases, diabetes, head injury, stroke, substance abuse
Table 3. The most common exposure histories for disease-modifying anti-rheumatic drugs (DMARDs) and their association with Parkinson’s disease (PD) risk during the exposure assessment period before three-year lag in both PD cases and controls.

<table>
<thead>
<tr>
<th>Exposure History</th>
<th>Controls N=1571</th>
<th>PD cases N=315</th>
<th>Adjusted* OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfasalazine</td>
<td>165 (10.5)</td>
<td>32 (10.2)</td>
<td>reference</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine, methotrexate, and sulfasalazine</td>
<td>163 (10.4)</td>
<td>32 (10.2)</td>
<td>1.02 (0.58-1.79)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine</td>
<td>109 (6.9)</td>
<td>13 (4.1)</td>
<td>0.64 (0.32-1.29)</td>
</tr>
<tr>
<td>Methotrexate and sulfasalazine</td>
<td>95 (6.1)</td>
<td>26 (8.3)</td>
<td>1.47 (0.82-2.65)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>81 (5.2)</td>
<td>19 (6.0)</td>
<td>1.19 (0.63-2.25)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine and sulfasalazine</td>
<td>91 (5.8)</td>
<td>8 (2.5)</td>
<td>0.46 (0.20-1.06)</td>
</tr>
<tr>
<td>Gold preparations</td>
<td>80 (5.1)</td>
<td>14 (4.4)</td>
<td>0.95 (0.47-1.91)</td>
</tr>
<tr>
<td>Chloroquine/hydroxychloroquine and methotrexate</td>
<td>79 (5.0)</td>
<td>13 (4.1)</td>
<td>0.95 (0.46-1.94)</td>
</tr>
</tbody>
</table>

*Asthma or chronic obstructive pulmonary disease (COPD), cancer history, cardiovascular diseases, diabetes, head injury, stroke, substance abuse
Disease-Modifying Antirheumatic Drugs and Risk of Parkinson Disease: Nested Case-Control Study of People With Rheumatoid Arthritis
Anne Paakinaho, Marjaana Koponen, Miia Tiihonen, et al.

Neurology published online January 21, 2022
DOI 10.1212/WNL.0000000000013303

This information is current as of January 21, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/01/20/WNL.0000000000013303.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All epidemiology
http://n.neurology.org/cgi/collection/all_epidemiology
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases
Case control studies
http://n.neurology.org/cgi/collection/case_control_studies
Class II
http://n.neurology.org/cgi/collection/class_ii
Parkinson disease/Parkinsonism
http://n.neurology.org/cgi/collection/parkinsons_disease_parkinsonism
Risk factors in epidemiology
http://n.neurology.org/cgi/collection/risk_factors_in_epidemiology

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise