Clinical Reasoning: A 48-Year-Old Woman Presenting With Vertigo, Ptosis and Red Eyes

Author(s):
Keun-Tae Kim, MD1; Seol-Hee Baek, MD1; Sun-Uk Lee, MD1,2; Jung Bin Kim, MD, PhD1; Ji-Soo Kim, MD, PhD2,3

Corresponding Author:
Sun-Uk Lee
sulee716@gmail.com

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea; 2. Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea; 3. Dizziness Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

Contributions:
Keun-Tae Kim: Drafting/revision of the manuscript for content, including medical writing for content
Seol-Hee Baek: Analysis or interpretation of data
Sun-Uk Lee: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Jung Bin Kim: Study concept or design
Ji-Soo Kim: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Number of characters in title: 84

Abstract Word count: 103

Word count of main text: 1490

References: 15

Figures: 2

Tables: 1

Supplemental: Video 1 and 2, consent-to-disclose form, CARE guideline

Acknowledgements: The authors thank Sung-Jin Jo for the illustration.
This study followed the tenets of the Declaration of Helsinki and was performed according to the guidelines of Institutional Review Board of Korea University Anam Hospital (2021AN0346).

Study Funding: This study was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare (HI14C3477), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. NRF-2016R1D1A1B04035568).

Disclosures: K.T. Kim, Baek, Lee, and J.B. Kim report no disclosures.
Abstract

We describe acute vestibular syndrome in a 48-year-old woman with breast cancer who was finally found to have anti-Ma2-associated encephalitis. Even though the initial diagnosis was vestibular neuritis elsewhere, progression of symptoms and additional findings of bilateral ptosis and circumlimbal injections, vertical saccadic slowing, and impaired convergence led to a suspicion of a rostral midbrain lesion and final diagnosis. The patient’s symptoms and ocular motor signs improved markedly after administration of intravenous methylprednisolone and oral tacrolimus. Our patient again stresses the importance of scrutinized ocular motor evaluation for detection of central lesions even in patients with the clinical features of unilateral peripheral vestibulopathy.

Section 1

A 48-year-old woman presented with spontaneous vertigo and nausea for two weeks. The patient was diagnosed with vestibular neuritis elsewhere, but her dizziness and imbalance worsened despite treatments. She reported a constant spinning sensation of her body irrespective of position changes. The patient also developed painful red eyes one week before presentation. Two years earlier, she had been diagnosed with invasive lobular carcinoma in her right breast and underwent modified radical mastectomy followed by adjuvant chemotherapy and tamoxifen. The patient was not placed on any immunosuppressive treatment, thereafter. She did not have headache, tinnitus, ear fullness, or hearing loss.

Examination showed circumlimbal injection and ptosis in both eyes (Figure 1) as well as spontaneous nystagmus beating rightward. Ductions and versions were full, but saccades seemed slow in vertical direction. Convergence was also impaired. Bedside head-impulse tests (HITs) were positive for the left horizontal canal (HC). The patient fell immediately on standing without support, yet was able to sit on her own (truncal ataxia grade
3). Slit lamp examination revealed uveitis and cells in the anterior chamber in the right eye. Neurologic examination was otherwise normal.

Question for consideration:

1. Which findings stand against the diagnosis of vestibular neuritis?
2. What are some advanced vestibular function tests that can help determine central vs. peripheral involvement?

Section 2

Vestibular neuritis is characterized by acute spontaneous vertigo, nausea/vomiting, and unsteadiness due to unilateral vestibular deafferentation. Patients exhibit spontaneous horizontal-torsional nystagmus beating away from the lesion side, positive HITs, ipsilesional canal paresis, and a tendency to fall toward the lesion side. The contralateral spontaneous nystagmus and positive HITs initially appeared to support the diagnosis of vestibular neuritis in our patient. However, severe truncal ataxia and worsening of symptoms over a two-week span are atypical for vestibular neuritis. Moreover, ptosis, vertical saccadic slowing and painful red eyes raised suspicion of a midbrain lesion, associated with systemic inflammation.

For these reasons, a thorough vestibular evaluation was conducted (Table). Video-oculography showed spontaneous nystagmus beating rightward and clockwise without visual fixation (Figure 2A). Horizontal saccades were hypometric and vertical saccades were slow (Figure 2B, Video 1). Video-HITs showed decreased gains of the vestibulo-ocular reflex (VOR) for the anterior and posterior canals on both sides as well as for the left HC (Figure 2C). Bithermal caloric tests showed a canal paresis of 76% in the left ear (sum of the peak slow-phase velocities = 17 °/s). Torsional quick phases were abolished during head tilting to both sides and optokinetic stimulation (Video 2). Pure tone audiometry was normal.
Question for consideration:

1. How does the laboratory testing change your differential diagnosis?
2. What is the localization of the lesion based on these findings?
3. What are the possible etiologies causing these findings?
4. What are the next tests you would order?

Section 3

Bilaterally abnormal HITs of the vertical canals make the diagnosis of vestibular neuritis least likely. Rather, the combination of impaired torsional VOR and diminished torsional quick phases with vertical saccadic slowing, and impaired convergence suggest a rostral midbrain lesion predominantly involving the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) and the interstitial nucleus of Cajal (INC). Bilateral ptosis in the absence of gaze palsy suggests an incomplete nuclear or infranuclear lesion of the oculomotor nerve. The contralateral spontaneous nystagmus and positive HITs indicates an asymmetric involvement of the direct VOR circuit from the primary vestibular afferent to the ocular motor nuclei.

The excitatory burst neurons that generate vertical and torsional saccades reside in the riMLF, which project bilaterally to the ocular motor neurons of the elevator muscles, but ipsilaterally to those of the depressor muscles. The riMLF lies dorsomedial to the rostral pole of the red nucleus and lateral to the periaqueductal gray matter, rostral to the INC (eFigure 1). Experimental severance of the bilateral riMLF causes vertical saccadic slowing, and abolishes torsional quick phases during torsional VOR or optokinetic stimulation. The INC, which lies just beneath the riMLF, plays a key role in holding eccentric vertical gaze as well as in vertical and torsional VOR. It projects ipsilaterally to the ocular motor neurons via
the posterior commissure. Inactivation of the bilateral INC causes reduced gain of the vertical and torsional VOR as well as vertical gaze-evoked or upbeat nystagmus.1-3 Given the predominant impairment of vertical and torsional saccades, along with vertical and torsional VOR impairments, the riMLF and INC may have been damaged in our patient. Bilateral ptosis also indicates a partial involvement of the central caudal nucleus.

Several diseases involving the rostral midbrain present vertical supranuclear eye movement abnormalities.4 The subacute onset observed in our patient raises a suspicion of inflammatory, infectious, or demyelinating disease involving the rostral midbrain, such as anti-Ma2 associated encephalitis, viral rhombencephalitis, Creutzfeldt-Jakob disease, or Whipple disease. It could also be caused by neurodegenerative diseases such as progressive supranuclear ophthalmoplegia, Niemann-Pick type C, midbrain infarction, or even a pineal gland tumor compressing the rostral midbrain tectal plate.

The abovementioned information necessitated brain MRI and cerebrospinal fluid (CSF) analysis. Brain MRIs and angiography with gadolinium-enhancement were normal, and there were no discernible findings on fat suppression images of the orbit. CSF analysis showed pleocytosis of 114/mm3 (75% lymphocytes) and protein of 69 mg/dL. CSF cytology and venereal disease research laboratory tests were negative. The serum was positive for anti-Ma2 antibody, but negative for other paraneoplastic antibodies. The serum was also negative for autoimmune and viral markers. Breast ultrasonography, mammography, and CT with contrast for the chest, abdomen, and pelvis all yielded normal results. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) did not reveal any evidence of metastasis or tumor relapse. The patient was administered 1 g per day of intravenous methylprednisolone for five consecutive days, followed by 1 g per day of tacrolimus for one month. The patient reported improvement of dizziness and was able to walk without support. The right-beating nystagmus and abnormal HITs improved markedly, and the patient’s ptosis and uveitis resolved one
month later.

Question for consideration:

1. What is the diagnosis and prognosis?

Discussion

Our patient with anti-Ma2-associated encephalitis showed vertical saccadic slowing, abnormal HITs for the vertical semicircular canals, impaired torsional VOR, and disappearance of torsional quick phases along with anterior uveitis.

Ma1 and Ma2 are intracellular proteins expressed in the testis and brain, particularly in the limbic and brainstem region. Patients with anti-Ma2-associated encephalitis can therefore present with memory impairment, hypersomnolence, and ocular motor abnormalities. These symptoms are mostly associated with testicular tumors but sometimes with lung, breast, or ovarian cancers. Unlike other paraneoplastic syndromes that rapidly progress over six to eight weeks, anti-Ma2-associated encephalitis progresses slowly, thereby complicating the diagnosis. Although tacrolimus was chosen for treatment in consideration of our patient’s economic status, rituximab, mycophenolate mofetil, and cyclophosphamide are more widely used for immunomodulation in paraneoplastic syndrome. In general, anti-Ma2-associated paraneoplastic syndrome is challenging to treat since neurologic deterioration can be observed in nearly half of all patients. Yet, a favorable outcome can be expected in patients aged younger than 45 years, those with limited involvement of the nervous system in the limbic, brainstem, and cerebellum, or those with favorable tumor response to treatment. Furthermore, since anti-Ma2-associated encephalitis is frequently accompanied by ocular motor abnormalities, analyses of ocular motor function can aid in early detection, leading to a favorable outcome. Likewise in our patient, vertical gaze paresis is the most prominent
ocular motor finding in anti-Ma2-associated encephalitis along with other ocular motor abnormalities such as ptosis, vertical ophthalmoplegia, opsoclonus, downbeat or upbeat nystagmus, and skew deviation.6-8

Acute unilateral peripheral vestibulopathy may initially have been presumed based on the horizontal nystagmus and abnormal HITs. However, red eyes may be an alarm for inflammation not confined to the vestibular afferents in our patient. Although the patient exhibit neurotologic signs of unilateral peripheral vestibulopathy, other ocular motor findings should be fully sought especially among those with an atypical presentation.

The combination of ocular inflammation and vestibulopathy may also raise a suspicion of Cogan syndrome; an inflammatory disorder due to autoantibodies against the cornea and inner ear. However, red eyes are ascribed to non-syphilitic interstitial keratitis in Cogan syndrome. Moreover, our patient did not have hearing loss, which is characteristic of Cogan syndrome.9 Let alone the central ocular motor signs from midbrain dysfunction, our patient implicates that detection of the subtle signs of systemic inflammation is important in patients presenting with acute/subacute vestibular syndrome.9,10

Our patient showed no evidence of recurrence of breast cancer. Indeed, recurrence of tumor can follow paraneoplastic syndrome.11 This may be ascribed to limited diagnostic yield of conventional screening tests. Since the smallest breast tumor detectable by mammography measures 2.1 mm,12 and sensitivity of FDG-PET in detecting breast tumors less than 2 cm in size is less than 50%,13 a recurrence may have been missed. Given that the average tumor volume doubling time of breast cancer is 280 days,14 a repeated screening with breast MRI and mammography every 6 months at least for 4 years is recommended for our patient.15
References

12. Spratt JS, Greenberg RA, Heuser LS. Geometry, growth rates, and duration of cancer

<table>
<thead>
<tr>
<th>Vestibular and ocular motor tests</th>
<th>How-to-do / purpose of the test</th>
<th>Normal findings</th>
<th>Positive findings in our patient</th>
<th>Interpretation (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular alignment and movement</td>
<td>Measurement of the ocular angles of strabismus with alternate cover test using a prism bar</td>
<td>Orthophoria with normal duction and version deviation</td>
<td>Exotropia of 6 prism diopters No skew convergence</td>
<td>Impaired convergence path (supraoculomotor area in the rostral midbrain)</td>
</tr>
<tr>
<td>Spontaneous nystagmus</td>
<td>Recording of spontaneous nystagmus while fixating on a target and in darkness</td>
<td>No nystagmus clockwise†</td>
<td>Right and clockwise† without visual fixation</td>
<td>Impaired VOR for the left semicircular canals</td>
</tr>
<tr>
<td>Saccades</td>
<td>Shifting one’s gaze between two separated targets while not moving the head / Assessment of the patient’s ability to accurately move</td>
<td>Normal saccadic initiation slowing, hypometria latency, gain, velocity</td>
<td>Vertical saccadic generation (superior colliculus or riMLF)</td>
<td>Impaired saccadic generation (superior colliculus or riMLF)</td>
</tr>
</tbody>
</table>
the eyes from one designated point to another in a single, quick movement

<table>
<thead>
<tr>
<th>Video HITs</th>
<th>Staring at an earth-fixed target during head impulses along the alignment of the semicircular canals / Evaluation of the high-frequency VOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal gains and no covert or overt saccades</td>
</tr>
<tr>
<td></td>
<td>Reduced gain of the VOR for left HC and vertical canals in absence of corrective saccades</td>
</tr>
<tr>
<td></td>
<td>Impaired VOR in the left, impaired VOR for the ACs and PCs on both sides (INC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bithermal caloric tests</th>
<th>Eliciting a convection current of the endolymph using cold and warm water (or air) in each ear / Evaluation of the low-frequency VOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canal paresis < 25% of 76% in the left ear canal</td>
</tr>
<tr>
<td></td>
<td>Directional preponderance < 30%</td>
</tr>
<tr>
<td></td>
<td>Impaired VOR in the left horizontal canal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotatory chair tests</th>
<th>Sinusoidal angular rotation and acceleration or Normal VOR gain, symmetry, phase, time of the VOR, counter-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decreased gain of the VOR, Impaired VOR in the left</td>
</tr>
<tr>
<td>deceleration of the body in the yaw plane / Evaluation of mid-frequency VOR</td>
<td>constants, normal tilt suppression during sinusoidal harmonic acceleration</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Optokinetic nystagmus</td>
<td>Placing a moving optokinetic drum or visual patterns on a monitor in front of the patient’s visual field / Evaluation of the reflexive saccades</td>
</tr>
</tbody>
</table>

1 *Most plausible neural substrates responsible for the abnormal eye movements in our patient—the upper poles of the eyes beating to the patient’s right shoulder.

2 AC = anterior canal, HITs = head-impulse tests, INC = interstitial nucleus of Cajal, PC = posterior canal, riMLF = rostral interstitial nucleus of medial longitudinal fasciculus, VOR = vestibulo-ocular reflex
Figure Legends

Figure 1. The patient shows circumlimbal injection and ptosis in both eyes, more prominent in the right (validated bulbar redness scale 90 in the right and 50 in the left eye). Please note the irregular-shaped pupil around the lower pupillary margin in the right eye from posterior synechiae (yellow arrow).
Figure 2. Neurotologic findings of the patient. A. Video-oculography (SLVNG, SLMED, Seoul, Republic of Korea) shows right-beating spontaneous nystagmus without visual fixation. The torsional trace is removed due to severe noise. B. Saccades are slow in vertical directions. C. Video head-impulse tests show decreased gains of the vestibulo-ocular reflex (VOR) for the anterior (ACs, normal gain = 0.75 – 1.29) and posterior canals (PCs, normal gain = 0.77 – 1.13) on both sides as well as for the left horizontal canal (HC, normal gain = 0.88 – 1.27). Note the absence of corrective saccades despite the decrease of VOR gain for the vertical semicircular canals. Upward deflection indicates rightward or upward eye motion in figures A and B.

$H = \text{horizontal position of the left eye, } INC = \text{the interstitial nucleus of Cajal, } riMLF = \text{rostral interstitial nucleus of the medial longitudinal fasciculus, } V = \text{vertical position of the left eye.}$
Video legends

Video 1. Video-oculography shows prominent saccadic slowing in vertical directions. For comparison, vertical saccades in a healthy subject are also presented. The horizontal saccades are hypometric but exhibit mostly normal saccadic velocity in our patient. Please note the irregular lower pupillary margin due to the posterior synechiae from anterior uveitis involving the right eye.

Video 2. The torsional VOR is impaired along with diminished torsional quick phases during head tilt to either side and torsional optokinetic stimulation.
Clinical Reasoning: A 48-Year-Old Woman Presenting With Vertigo, Ptosis and Red Eyes
Keun-Tae Kim, Seol-Hee Baek, Sun-Uk Lee, et al.
Neurology published online February 28, 2022
DOI 10.1212/WNL.0000000000200141

This information is current as of February 28, 2022