Stroke Among SARS-CoV-2 Vaccine Recipients in Mexico: A Nationwide Descriptive Study

Author(s):
Diego López-Mena, MD; Miguel García-Grimshaw, MD; Sergio Saldivar-Dávila, MD; Laura Elena Hernandez-Vanegas, MD; María del Mar Saniger-Alba, MD; Alonso Gutiérrez-Romero, MD; Roger Carrillo-Meza, MD; Hector Eduardo Valdez-Ruvalcaba, MD; Vanessa Cano-Nigenda, MD; Fernando Daniel Flores-Silva, MD; Carlos Cantú-Brito, MD; Ana María Santibañez-Copado, MD; José-Luis Díaz-Ortega, MD; Santa Elizabeth Céballos-Liceaga, MD; Luis Manuel Murillo-Bonilla, MD; Ana Isabel Sepulveda-Núñez, MD; Verónica García-Talavera, MD; Eduardo Gonzalez-Guerra, MD; Ricardo Cortes-Alcala, MD; Hugo Lopez-Gatell, MD; Guillermo Carbajal-Sandoval, MD; Gustavo Reyes-Terán, MD; Sergio Iván Valdés-Ferrer, MD; Antonio Arauz, MD, PhD

Corresponding Author:
Antonio Arauz, antonio.arauz@prodigy.net.mx


Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Equal Author Contribution:
López-Mena D, García-Grimshaw M, and Valdés-Ferrer SI contributed equally to this work as first co-authors.

Contributions:
Diego López-Mena: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Miguel García-Grimshaw: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Sergio Saldívar-Dávila: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Laura Elena Hernández-Vanegas: Major role in the acquisition of data; Study concept or design
María del Mar Saniger-Alba: Major role in the acquisition of data; Study concept or design
Alonso Gutiérrez-Romero: Major role in the acquisition of data; Study concept or design
Roger Carrillo-Mezo: Major role in the acquisition of data; Study concept or design
Hector Eduardo Valdez-Ruvalcaba: Major role in the acquisition of data; Study concept or design
Vanessa Cano-Nigenda: Major role in the acquisition of data; Study concept or design
Fernando Daniel Flores-Silva: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Carlos Cantú-Brito: Major role in the acquisition of data; Study concept or design
Ana María Santibañez-Copado: Major role in the acquisition of data; Study concept or design
Jose-Luis Díaz-Ortega: Major role in the acquisition of data; Study concept or design
Santa Elizabeth Ceballos-Liceaga: Major role in the acquisition of data; Study concept or design
Luis Manuel Murillo-Bonilla: Major role in the acquisition of data; Study concept or design
Ana Isabel Sepulveda-Núñez: Major role in the acquisition of data; Study concept or design
Verónica García-Talavera: Major role in the acquisition of data; Study concept or design
Eduardo Gonzalez-Guerra: Major role in the acquisition of data; Study concept or design
Ricardo Cortés-Alcala: Major role in the acquisition of data; Study concept or design
Guillermo Carbajal-Sandoval: Major role in the acquisition of data; Study concept or design
Gustavo Reyes-Terán: Major role in the acquisition of data; Study concept or design
Sergio Iván Valdés-Ferrer: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Antonio Arauz: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
3

Table Count:
2

Search Terms:

Acknowledgment:
None

Study Funding:
The authors report no targeted funding
ABSTRACT

Background and objectives: Information on stroke among SARS-CoV-2 vaccines remains scarce. We report stroke incidence as an adverse event following immunization (AEFI) among recipients of 79,399,446 doses of 6 different SARS-CoV-2 vaccines (BNT162b2, ChAdOx1 nCoV-19, Gam-COVID-Vac, CoronaVac, Ad5-nCoV, and Ad26.COV2-S) between December 24, 2020, and August 31, 2021, in Mexico.

Methods: Retrospective descriptive study analyzing stroke incidence per million doses among hospitalized adult patients (≥18 years) during an 8-month interval. According to the World Health Organization, AEFIs were defined as clinical events occurring within 30 days following immunization and categorized as either non-serious or serious depending on severity, treatment, and hospital admission requirements. Acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral venous thrombosis (CVT) cases were collected through a passive epidemiological surveillance system in which local health providers report potential AEFI to the Mexican General Board of Epidemiology. Data were captured using standardized case report formats by an ad-hoc committee appointed by the Mexican Ministry of Health to evaluate potential neurologic AEFI against SARS-COV-2.

Results: We included 56 patients (female, 31 [55.5%]) for an overall incidence of 0.71 cases per 1,000,000 administered doses (95% confidence interval [CI] 0.54–0.92); median
age was 65 years (interquartile range 55–76); median time from vaccination-to-stroke (of any subtype) was 2 days (interquartile range 1–5); in 27 (48.2%) patients, the event was diagnosed within the first 24 hours following immunization. The most frequent subtype was AIS in 43 patients (75%; 0.54/1,000,000 doses, 95% CI 0.40–0.73) followed by ICH in 9 (16.1%; 0.11/1,000,000 doses, 95% CI 0.06–0.22), and SAH and CVT, each with 2 cases (3.6%; 0.03/1,000,000 doses, 95% CI 0.01–0.09). Overall, the most common risk factors were hypertension in 33 (58.9%) patients and diabetes mellitus in 22 (39.3%); median hospital length of stay was 6 days (IQR 4–13); at discharge, functional outcome was good (modified Rankin Scale of 0–2) in 41.1% of patients; in-hospital mortality rate was 21.4%.

**Discussion:** Stroke is an exceedingly rare AEFI against SARS-CoV-2. Pre-existing stroke risk factors were identified in most patients. Further research is needed to evaluate causal associations between SARS-CoV-2 vaccines and stroke.
Introduction

The global burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections motivated an unprecedented effort by multiple research groups worldwide to develop effective vaccines against it. Due to the devastating effects of SARS-COV-2, these vaccines received emergency approval after demonstrating efficacy in phase 3 randomized clinical trials with limited information about their potential side effects;\(^1,2\) therefore, health organizations worldwide faced the challenge of identifying, evaluating, and reporting the potential Adverse Events Following Immunization (AEFI) of these newly-developed vaccines. Between December 24, 2020, and August 31, 2021, the Mexican Ministry of Health granted emergency approval for the use of 6 SARS-COV-2 vaccines from different manufacturers, BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCov-19 (AstraZeneca-Oxford), Gam-COVID-Vac (Sputnik V), CoronaVac (Sinovac), Ad5-nCoV (CanSino), and Ad26.COV2-S (Janssen-Johnson & Johnson).\(^3\)

Arterial and venous thrombotic events at unusual sites with associated thrombocytopenia have been recently reported with the ChAdOx1 nCov-19 and Ad26.COV2-S vaccines;\(^4-8\) including acute ischemic stroke (AIS) as well as cerebral venous thrombosis (CVT) cases.\(^9-12\) According to the World Health Organization Global Database for Individual Case Safety Reports (VigiBase), between December 13, 2020, and March 16, 2021, a total of 361,734,967 doses of any of the available vaccines were applied worldwide; during that interval, 795 venous and 1,374 arterial thrombotic events were reported.\(^13\) In the United States of America, the Vaccine Adverse Event Reporting System (VAERS) reported that by March 2, 2021, a total of 51,755,447 vaccines doses were applied with 9,442 AEFI reports, including 17 strokes.\(^14\)
Here, from a nationwide registry of severe neurologic AEFI in Mexico, we aim to report the incidence of acute stroke among recipients of 79,399,446 doses of the 6 different vaccines against SARS-COV-2 approved and in use during the study interval; we also evaluate the presence of well-known cardiovascular disease risk factors (CVD) and clinical outcomes at hospital discharge.

Methods

Study Design and Population

We conducted a nationwide retrospective descriptive study evaluating the incidence of stroke among recipients of BNT162b2, ChAdOx1 nCov-19, Gam-COVID-Vac, CoronaVac, Ad5-nCoV, and Ad26.COV2-S vaccines in Mexico between December 24, 2020, and August 31, 2021, using official data provided by the Mexican Ministry of Health. We included only confirmed stroke cases presenting within the first 30 days following vaccination and excluded those with an alternate diagnosis explaining the acute neurological deficit or those where neuroimaging studies suggested alternative diagnoses. All patients with stroke were followed until hospital discharge.

The Mexican Ministry of Health monitors and collects information on all AEFI through a passive epidemiological surveillance system, including no less than 23,300 public and private medical units distributed across the country. Due to the passive nature of this system, events are reported either by the health institution, attending physician, or directly by the recipient to the local or state health authorities; the latter reports all cases to the General Board of Epidemiology, which is the governmental institution responsible for processing and getting follow-up information on each serious AEFI every 24 hours.15,16
Mexico started its vaccination program against SARS-CoV2 on December 24, 2020. Within days, the surveillance system detected a suspicious cluster of potentially serious neurologic AEFIs; hence the Mexican Ministry of Health appointed an ad-hoc committee consisting of 5 experienced neurologists and a neuroradiologist (all of them, authors of this article and reviewers of the collected data) to perform a thorough analysis of every potentially serious neurologic AEFI aiming to establish causality of the events. This committee continuously evaluates the clinical data, imaging studies, and the evolution of each serious neurologic AEFI case through virtual sessions carried out 3 times a week with direct interaction with the attending physicians of each patient.

Standard Protocol Approvals, Registrations, and Patient Consents

The study was reviewed and approved by the Ethics and Research Committees of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (NER-3903-21-23-1); due to the observational nature of the study, informed consent was waived. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Definitions of Adverse Events Following Immunization

AEFIs were defined according to the World Health Organization (WHO) operational definition, which includes all events potentially attributable to immunization occurring in the first 30 days after vaccination; those events are classified as non-serious or serious. Non-serious AEFIs are those meeting the following criteria: 1) do not pose an imminent risk of death; 2) do not require hospitalization; 3) disappear with or without symptomatic treatment; 4) do not cause long-term disability, such as local (e.g., injection-site pain,
swelling, rash, or local infections treated on an outpatient basis) or systemic events (e.g., headache, fever, malaise, diarrhea, muscle and/or joint pain). Serious AEFIs are those presenting with any clinical manifestation meeting 1 or more of the following criteria: 1) put life in imminent danger; 2) require or prolong in-hospital treatment; 3) lead to persistent or significant disability; 4) lead to death; 5) in the case of pregnant women, cause in-utero malformations. If presenting within the proposed timeframe by the WHO, serious neurologic AEFI may include cases of stroke, Guillain-Barré syndrome, acute transverse myelitis, and acute disseminated encephalomyelitis, to name a few. However, in all, causality must be determined after excluding other potential etiologies.

*Stroke Case and Outcome Definitions*

Stroke subtypes were classified according to the American Heart Association/American Stroke Association Updated Definition of Stroke.\textsuperscript{19} AIS was defined as the presence of an acute neurological deficit lasting longer than 24 hours, confirmed by either head CT scan, MRI or both. If AIS was diagnosed, putative etiologies were stratified according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification.\textsuperscript{20} Intracerebral hemorrhage (ICH) was defined as bleeding into the brain parenchyma and classified as hypertensive or traumatic. Subarachnoid hemorrhage (SAH) was defined as the extravasation of blood into the subarachnoid space between the pial and arachnoid membranes and classified as aneurysmal or not. CVT was defined as the presence of a thrombus in the cerebral veins, sinuses, or both. Functional outcomes at hospital discharge were measured using the modified Rankin scale (mRS) and further classified as good (mRS 0–2), poor (mRS 3–5), or fatal (mRS 6).\textsuperscript{21}
Data Collection

De-identified data were collected and entered into a secure online database using standardized stroke case report formats filled and reviewed by at least 2 members (researchers) of the aforementioned ad-hoc committee during the virtual sessions, one of them an experienced stroke neurologist (A.-A) and a third member adjudicated for any differences between the primary reviewers. Data collection included demographic (age and sex) information, history of CVD risk factors (hypertension, diabetes, obesity, smoking, and end-stage chronic kidney disease), history of any cardiac heart disease (e.g., atrial fibrillation or patent foramen ovale), history or concomitant SARS-CoV-2 infection, type of administered vaccine and in the case of two-dose vaccine regimen the number of doses received, the interval in days between vaccine administration and stroke symptoms onset, platelet count, stroke treatments such as thrombolysis, thrombectomy, and craniectomy, as well as the functional outcome. The total number of administered doses nationwide of each vaccine for this analysis was obtained from the Mexican Ministry of Health throughout the General Board of Epidemiology.

Statistical Analysis

Categorical variables are presented as frequencies with proportions, and continuous variables are reported as median with interquartile range or as minimum-maximum range as deemed appropriate. We calculated the incidence proportion for each stroke subtype per 1,000,000 administered doses; 95% confidence intervals (CI), these proportions were calculated using the Wilson method. A statistical power calculation was not performed; instead, all stroke cases were included. Cases with missing data were analyzed and are reported separately. Some percentages may not add up to 100% due to rounding. Statistical analyses were performed using IBM SPSS Statistics version 26 (IBM Corp.,
Data Availability

The manuscript provides all the collected data. De-identified data to replicate our results will be available to qualified researchers upon written request to the corresponding author.

Results

During the study period, 79,399,446 doses of 6 different SARS-CoV-2 vaccines were administered in Mexico, for which the Mexican Epidemiological Surveillance System received and processed 28,646 AEFI reports. Among those, 27,968 (98%) were classified as non-serious, and 681 (2%) as serious. Sixty-eight patients were initially reported as stroke cases; following evaluation by the ad-hoc committee, 5 were excluded due to an alternative diagnosis (1 each: meningioma, peripheral neuropathy, septic shock, sensitive neuropathy, and pneumonia); in 7 patients, the diagnosis of stroke was not supported by imaging, and they were therefore excluded, 1 of them a patient with a TIA diagnosis.

Fifty-six patients with confirmed stroke were included for the final analysis (8.2% of all serious AEFI); 31 (55.5%) females; median age was 65 years (IQR 55–76). Baseline characteristics, CVD risk factors, stroke subtype, and clinical outcome according to the type of vaccine are shown in Table 1. Five patients had a history of SARS-CoV-2 infection, but none tested positive for active infection at stroke onset; in 41 (73.2%), the event occurred after receiving the first vaccine dose. There were no stroke reports with the Ad26.COV2-S vaccine. The overall observed acute stroke incidence was 0.71 cases per
1,000,000 administered doses (95% CI 0.54–0.92); Ad5-nCoV was the vaccine with the highest observed incidence (Table 2).

Stroke Subtypes

The most frequent stroke subtype was AIS in 43 (76.8%) patients (0.54 per 1,000,000 doses; 95% CI 0.40–0.73) followed by ICH in 9 (16.1%; 0.11 per 1,000,000 doses; 95% CI 0.06–0.22), and 2 (3.6%) cases each of SAH and CVT (0.03 per 1,000,000 doses; 95% CI 0.01–0.09); unadjusted incidences for each stroke subtype according to the different vaccines hereby analyzed are reported in eTables 1–3 (available from Dryad, doi.org/10.5061/dryad.zpc866t9h). The median time from vaccination-to-stroke (of any subtype) was 2 days (IQR 1–5; min–max range 0–30 days), and in 27 (48.2%) patients, the event occurred within the first 24 hours following vaccination. Figure 1 shows the timing of each stroke subtype in weeks. The most common risk factors for all subtypes were hypertension in 33 (58.9%) and diabetes mellitus in 22 (39.3%) patients. Overall, the median hospital length of stay was 6 days (IQR 4–13); functional outcome at hospital discharge was good for 23 (41.1%) patients and poor for 21 (37.5%). There were 12 in-hospital deaths, for an all-cause mortality rate of 21.4%.

Demographic characteristics, risk factors, acute treatment, and clinical outcomes for the 43 patients with an AIS are shown in eTable 4 (available from Dryad, doi.org/10.5061/dryad.zpc866t9h). Twenty-two (51.1%) of all AIS occurred in male patients. The median age was 67 (54–74) years. According to the TOAST classification, 14 (32.6%) AIS cases were secondary to large-artery atherosclerosis; 15 (34.9%) cardioembolic; 5 (11.6%) lacunar, and 2 (4.7%) due to other determined etiology (carotid artery dissection and myeloproliferative syndrome); 7 (16.3%) cases were classified as
undetermined etiology (Figure 2). Regarding the treatment of AIS patients, 3 (6.9%) received IV thrombolytic therapy, 2 (4.7%) were treated by mechanical thrombectomy, and 2 (4.7%) required decompressive craniectomy. The functional outcomes of all patients according to stroke subtype are shown in Figure 3.

Eleven patients (19.6%) developed an intracranial hemorrhage (ICH or SAH); 9 (81.8%) women and 2 (18.2%) males, with a median age of 60 years (IQR 57–77). Eight cases of ICH (88.9%) were deemed as hypertensive and 1 (11.1%) due to traumatic brain injury. In all of the patients for which the mechanism was deemed as hypertensive, uncontrolled blood pressure was found at the first evaluation. Among patients with ICH, 1 was treated with craniectomy; 3 died, and 1 was discharged with a mRS of 5. Of patients with SAH, in 1, an aneurysm was documented, while in the other, the initial approach was inconclusive to determine the etiology. In both patients, the vaccine applied was BNT162b2.

A case of vaccine-induced immune thrombotic thrombocytopenia (VITT) was documented in a 25-year-old pregnant woman; the diagnosis was made 24 hours following immunization with the first dose of ChAdOx1 nCov-19; this patient developed sudden onset headache and new-onset seizures; thrombocytopenia and anti-platelet factor-4 (PF-4) antibodies were documented. Brain MRI revealed an extensive thrombosis of the superior sagittal sinus; she died 21 days after being diagnosed.

The other CVT case was in a 34-year-old man also immunized with the first dose of ChAdOx1 nCov-19; thrombocytopenia was not detected, and determination of PF-4 antibodies was not performed. This patient presented 24 hours following vaccination with new-onset seizures; a superficial cerebral vein thrombosis was diagnosed by brain MRI, severe dehydration was found as the only precipitating factor for the event, treated with
warfarin, he evolved favorably, and was discharged with a mRS of 0, 16 days after admission.

Discussion

Real-world pharmacovigilance reports are crucial for identifying safety concerns that may not be detected during vaccine clinical trials, particularly under the time constraints of the ongoing pandemic.\(^1\) Our study is one of the first to analyze the frequency and clinical profile of stroke as a potential adverse reaction to multiple SARS-CoV-2 vaccines. In this analysis of passive surveillance monitoring of more than 79.3 million doses of 6 different vaccines in Mexico, we found only 56 patients with acute stroke (43 AIS, 9 ICH, 2 SAH, and 2 CVT) suggesting that stroke \textit{per se} may be an exceedingly rare adverse event to SARS-CoV-2 vaccines. However, in most patients, a stroke etiology was identified, and there was only a temporal relationship with the vaccine. In fact, in only 7 patients with AIS, we were unable to determine a pre-existing or concurrent causal etiology, although, in 3 of them, the causality study protocol was incomplete.

Al-Mayhami \textit{et al.} recently described 3 AIS patients recipients of the ChAdOx1 nCoV-19 vaccine, all associated with large vessel occlusion, and in 2 of them, concomitant portal or cerebral venous thrombosis were detected, suggesting that immune-mediated coagulopathy may have been mechanistically associated.\(^9\) In our series, except for the fatal case of VITT, we did not find widespread evidence suggestive of coagulopathy, synchronic systemic thrombosis, or thrombocytopenia, indicating other potential triggering mechanisms. Although it seems speculative, these patients should likely be studied as embolic infarcts of undetermined source, something beyond the scope and feasibility of our study that will need to be addressed in future studies.
Skepticism and hesitancy towards these novel vaccines mixed with the psychological stressors surrounding the COVID-19 pandemic might trigger AEFIs known as immunization stress-related responses, characterized by anxiety, panic attacks, non-specific transient sensory symptoms, tachycardia, and transient increases in blood pressure following vaccination.\textsuperscript{23–26} Therefore, as most ICH events occurred in patients with hypertension, we hypothesize transient blood pressure increases resulting from these responses might play a mechanistic role in the rupture of chronically-damaged small vessels. Still, the mechanisms for developing this stroke subtype as an AEFI are yet to be elucidated.

Previous reports suggest that many potential external triggers may raise blood pressure, and their concurrence may favor intracranial hemorrhage, particularly in patients with hypertension.\textsuperscript{27} In this study, 90% of ICH cases were related to hypertension, and only in 1 patient, the event was secondary to trauma. Again, in cases of SAH, the only possible trigger appears to be an increase in blood pressure. SAH cases were temporally coincident with vaccination in our series, with no other pathophysiologica,l immunologically mediated explanation leading to aneurysm rupture. Trogstad et al. investigated the prevalence of skin, nose, and gingival bleedings after receiving adeno-vectored or mRNA-vaccines against SARS-CoV-2, finding a higher prevalence of mild bleeding episodes among adeno-vectored vaccine recipients.\textsuperscript{28} Taking into account those findings, we hypothesize that the increased odds for mild bleeding episodes among adeno-vectored vaccine recipients in combination with transient blood pressure increases may play a role in developing intracranial hemorrhages as an AEFI. A potential association that could be addressed in future studies.

Compared to the total number of administered ChAdOx1 nCov-19 doses worldwide, only a handful of CVT cases as an AEFI with this vaccine have been
Here, we report another patient with ChAdOx1 nCov-19-associated VITT. As a result of possible increased risk of CVT and severe thrombocytopenia after Ad26.COV2-S and ChAdOX1 nCov-19, several European countries restricted the use of these vaccines, especially in younger patients. However, in low- and middle-income countries, the incidence of VITT may be lower (or underdiagnosed), despite the fact that these countries are more dependent on adenovirus-vectored vaccines, something that will need to be validated or refuted in larger studies.

Despite the concerns related to morbidity and mortality with these newly-developed vaccines, stroke was rare AEFI in our series. Moreover, in almost all of our evaluated patients, a stroke cause was found. Although there are several reports of neurologic events associated with the current SARS-CoV-2 vaccines, including all stroke subtypes, currently the risk of stroke associated with SARS-COV-2 (0.8–1.4%) seems to be much greater than that associated with vaccination. Interestingly, 80% of the AIS cases we detected (eTable 4) occurred among first-dose recipients of both mRNA-based and adenovectored vaccines. Some authors have suggested that the neurological spectrum of VITT may include arterial thrombotic events. However, these events have been mostly reported among recipients of the ChAdOx1 nCoV-19 vaccine, and little information exists regarding this stroke subtype among recipients of BNT162b2; however, with the present analysis, we are unable to establish causation.

There is still limited information on the absolute risk of stroke after SARS-CoV-2 vaccination. Although, the overall stroke incidence of 0.71 cases per 1,000,000 administered doses we observed seems much lower than that of 270.7 cases per 100,000 inhabitants or 27.1 cases per 1,000,000 inhabitants in 2011 reported by the only Mexican epidemiological study on stroke that exists. However, our results should be taken with
caution as the current stroke incidences in our country among the unvaccinated population or those fully vaccinated with a two-dose regimen are currently unknown.

This report has some limitations. First, interpretation of the study is limited by its descriptive nature and lack of statistical power to establish causality due to the low frequency of stroke we observed. Second, our analysis is prone to selection bias due to the passive nature of the Mexican epidemiological surveillance system and by the fact that only patients evaluated by the ad-hoc committee were included. Third, as AEFI reports rely upon local health care providers, some stroke subtypes may be underdiagnosed, particularly minor AIS and CVT cases presenting with mild or non-disabling symptoms or sequelae, as well as those occurring in rural settings, with limited access to medical services, treated at home, or whenever medical attention was not sought.\textsuperscript{44-46} All of the limitations mentioned above are some of the weaknesses of passive surveillance systems, which are less likely to detect cases than active ones.\textsuperscript{47,48} Finally, we were unable to analyze strokes according to dose for vaccines requiring a two-dose regimen.

In conclusion, our observations suggest that stroke remains an exceedingly rare event among recipients of 6 different vaccines against SARS-CoV-2. Although real-world data analysis is useful to identify potential safety signals requiring further investigation, our results cannot be used to determine causation. Therefore, further research is still needed to analyze the potential causal associations between stroke and the different vaccines against SARS-COV-2 vaccines currently available worldwide.

WNL-2022-200450_sup --- [http://links.lww.com/WNL/B867](http://links.lww.com/WNL/B867)
REFERENCES


## TABLES

### Table 1. Baseline Characteristics, Vaccination Details, Stroke Subtypes, and Clinical Outcomes.

<table>
<thead>
<tr>
<th></th>
<th>ChAdOx1 nCoV-19 (n = 23)</th>
<th>BNT162b2 (n = 17)</th>
<th>Gam-COVID-Vac (n = 1)</th>
<th>Ad5-nCoV (n = 6)</th>
<th>CoronaVac (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR), years</td>
<td>68 (48–76)</td>
<td>59 (53–67)</td>
<td>82</td>
<td>62 (50–69)</td>
<td>76 (64–86)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>11 (47.8)</td>
<td>11 (64.7)</td>
<td>1 (100)</td>
<td>2 (33.3)</td>
<td>6 (66.7)</td>
</tr>
<tr>
<td>Male</td>
<td>12 (52.2)</td>
<td>6 (35.3)</td>
<td>0 (0)</td>
<td>4 (66.7)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Medical history, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>14 (60.9)</td>
<td>7 (41.2)</td>
<td>1 (100)</td>
<td>3 (50)</td>
<td>8 (88.9)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>13 (56.5)</td>
<td>5 (29.4)</td>
<td>1 (100)</td>
<td>0 (0)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Obesity, BMI ≥ 30 kg/m²</td>
<td>2 (8.7)</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
<td>1 (16.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Smoking</td>
<td>7 (30.4)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (16.7)</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>3 (13)</td>
<td>4 (23.5)</td>
<td>0 (0)</td>
<td>2 (33.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other heart disease*</td>
<td>6 (26.1)</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>End-stage kidney disease</td>
<td>1 (4.3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Past SARS-CoV-2 infection</td>
<td>0 (0)</td>
<td>2 (11.8)</td>
<td>0 (0)</td>
<td>1 (16.7)</td>
<td>2 (22.2)</td>
</tr>
<tr>
<td>Days from immunization to stroke, median (min-max), days</td>
<td>2 (0–30)</td>
<td>2 (0–30)</td>
<td>0 (0)</td>
<td>1 (0–26)</td>
<td>1 (0–22)</td>
</tr>
<tr>
<td>Vaccine dose, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>19 (82.6)</td>
<td>8 (47.1)</td>
<td>0</td>
<td>6 (100)</td>
<td>8 (88.9)</td>
</tr>
<tr>
<td>Second</td>
<td>4 (17.4)</td>
<td>9 (52.9)</td>
<td>1 (100)</td>
<td>NA**</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td>Stroke subtype, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute ischemic stroke</td>
<td>19 (82.6)</td>
<td>11 (64.7)</td>
<td>1 (100)</td>
<td>6 (100)</td>
<td>6 (66.7)</td>
</tr>
<tr>
<td>Intracranial hemorrhage***</td>
<td>2 (8.7)</td>
<td>6 (35.3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Cerebral venous thrombosis</td>
<td>2 (8.7)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Length of stay, median (IQR) days

<table>
<thead>
<tr>
<th></th>
<th>7 (5–13)</th>
<th>6 (4–13)</th>
<th>2 (0)</th>
<th>4 (3–4)</th>
<th>5 (4–13)</th>
</tr>
</thead>
</table>

Clinical outcomes, n (%)

<table>
<thead>
<tr>
<th></th>
<th>8 (34.8)</th>
<th>8 (47.1)</th>
<th>1 (100)</th>
<th>2 (33.3)</th>
<th>4 (44.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good outcome, mRS 0–2</td>
<td>11 (47.8)</td>
<td>4 (23.5)</td>
<td>0 (0)</td>
<td>2 (33.3)</td>
<td>4 (44.4)</td>
</tr>
<tr>
<td>Poor outcome, mRS 3–5</td>
<td>4 (17.4)</td>
<td>5 (29.4)</td>
<td>0 (0)</td>
<td>2 (33.3)</td>
<td>1 (11.1)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; BMI, body mass index; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NA, not applicable; mRS, modified Rankin scale. Ad26.COV2-S is not included in this table as there were stroke reports with this vaccine. *Includes 4 patients with ischemic heart disease, and heart failure, valvular heart disease, and congenital cardiomyopathy, each in 1 patient. **Ad5-nCoV is a single dose vaccine regimen; the rest are two-dose vaccine regimen. ***Intracranial hemorrhage includes all patients with intracerebral hemorrhage and subarachnoid hemorrhage.
Table 2. Observed Incidence of any Acute Stroke Subtype Among 6 Different Vaccines Against SARS-COV-2.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Total doses</th>
<th>Number of cases</th>
<th>Incidence (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNT162b2</td>
<td>24,416,970</td>
<td>17</td>
<td>0.70 (0.43–1.12)</td>
</tr>
<tr>
<td>ChAdOx1 nCov-19</td>
<td>29,157,558</td>
<td>23</td>
<td>0.79 (0.53–1.18)</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>13,906,520</td>
<td>9</td>
<td>0.65 (0.34–1.23)</td>
</tr>
<tr>
<td>Gam-COVID-Vac</td>
<td>4,450,465</td>
<td>1</td>
<td>0.22 (0.04–1.27)</td>
</tr>
<tr>
<td>Ad5-nCoV</td>
<td>5,122,301</td>
<td>6</td>
<td>1.17 (0.54–2.56)</td>
</tr>
<tr>
<td>Ad26.COV2-S</td>
<td>1,345,632</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>All vaccines</td>
<td>79,399,446</td>
<td>56</td>
<td>0.71 (0.54–0.92)</td>
</tr>
</tbody>
</table>

**Abbreviations:** CI confidence interval; NA, not applicable; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. *Incidence per 1,000,000 doses administered.
**FIGURES LEGENDS**

**Figure 1.** Timing From Vaccination to Stroke Onset According to Stroke Subtype.

Ad26.COV2-S is not included in this figure as there were stroke reports with this vaccine.

*Intracranial hemorrhage includes all patients with intracerebral hemorrhage and subarachnoid hemorrhage.*
**Figure 2.** Acute Ischemic Stroke Etiology According to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Classification.

Ad26.COV2-S is not included in this figure as there were stroke reports with this vaccine.
Ad26.COV2-S is not included in this figure as there were stroke reports with this vaccine.

*Intracranial hemorrhage includes all patients with intracerebral hemorrhage and subarachnoid hemorrhage.
Stroke Among SARS-CoV-2 Vaccine Recipients in Mexico: A Nationwide Descriptive Study
*Neurology* published online March 11, 2022
DOI 10.1212/WNL.0000000000200388

This information is current as of March 11, 2022