Emerging Subspecialties in Neurology: A Career as a Clinical Trialist in Neurology

Author(s):
Katherine A. Fu, MD; Jeffrey L. Saver, MD; Susan Perlman, MD

Corresponding Author:
Katherine A. Fu, kfu@mednet.ucla.edu

Affiliation Information for All Authors: 1. Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California, 90095, USA

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Contributions:
Katherine A. Fu: Drafting/revision of the manuscript for content, including medical writing for content
Jeffrey L. Saver: Drafting/revision of the manuscript for content, including medical writing for content
Susan Perlman: Drafting/revision of the manuscript for content, including medical writing for content

Figure Count:
1

Table Count:
1

Search Terms:

Acknowledgment:

Study Funding:
The authors report no targeted funding

Disclosures:
The authors report no disclosures relevant to the manuscript.

Handling Editor Statement:
Submitted and externally peer reviewed. The handling editors were Roy Strowd III, MD, Med, MS and Whitley Aamodt, MD, MPH.
Abstract

The recent therapeutic advances in the field of neurology highlight the importance of ongoing clinical trials. However, while clinical research in neurology has remained relatively stable over the last 10 years, there has been an interval decrease in neuroscience applicants for NIH funding, which has raised concerns about the pipeline and future of clinical research in neurology. Those interested in such a career can begin by identifying a preclinical neuroscience advance that has yet to be translated into clinical trial work or a clinical area of need based upon conversations with patients and families. Once such an area of interest is identified, seeking mentors either at one’s own local institution or via networking at conferences is important in developing the necessary skills pertaining to clinical trial conduct and design as well as in gaining access to the relevant professional networks. There is also a myriad of training opportunities, such as the NINDS Clinical Trials Methodology Course, Masters of Science in Clinical Research, and certificate programs that offer formal training. Additional considerations for advancing in this career include exploring the potential for secondary publications using data available from prior clinical trials or serving as a sub-investigator. Challenges in pursuing such a career include the relatively low rate of positive outcomes compared with other fields and consistent salary support throughout one’s career. Overall, a career as a clinical trialist in neurology is rewarding, as one is able to participate in advancing the field and offer potentially new treatments to their patients.

Introduction

Recent therapeutic advances in neurology highlight the importance of clinical trials to identify therapeutics that mitigate debilitating symptoms or serve as disease modifying treatments. Interventional clinical trials in neurology have grown over time, from 1,208 in 2008 to 2,278 in 2017, with academic funding showing the most growth. However, despite these novel therapeutics, the rate of positive clinical trials tends to be low in neurology. The development of neurologists willing to advance the field is of integral importance. While neurologic clinical research has remained stable over the past decade, neuroscience applicants for NIH funding has decreased, raising concerns about the pipeline and future of clinical research in neurology. This paper aims to outline some of the steps to pursuing a rewarding career in clinical research, while sharing the insights of two senior clinicians as examples of ways to pursue such a career. Dr. Jeffrey Saver is currently Professor and Senior Associate Vice Chair for Clinical Research in the Department of Neurology at the University of California, Los Angeles (UCLA) and has been involved in multiple NIH-funded clinical trials. Dr. Susan Perlman is currently a Professor in the Department of Neurology and Director of the Ataxia and Neurogenetics Clinical Trials Program at UCLA. She has been involved in multiple industry-sponsored clinical trials investigating therapeutics for Friedrich’s ataxia, Spinocerebellar ataxia, and Multiple System Atrophy.

I. Early Career:

Those early in their careers may choose to subspecialize by pursuing fellowship training or a similar career training program. This early career period is an excellent time to identify an area of clinical interest relevant to clinical trials research and can be done by identifying a preclinical
neuroscience advance that has yet to be translated into clinical trial work or a clinical area of need based upon conversations with patients and families. Finding a therapeutic about which one is passionate is important to sustain motivation, as clinical trials typically span for multiple years.

Dr. Saver, for example, completed fellowship training in both behavioral and cognitive neurology and vascular neurology, but observed that stroke neurology had a better developed clinical trial enterprise that drew him to this area of research. He began his involvement in his first clinical trials as a stroke fellow, serving as a sub-investigator in one of the early IV tPA trials.

Dr. Perlman’s journey began from fellowship work in a lab investigating Friedrich’s ataxia (FA), which involved a half-day clinic where she saw research patients with FA. Eventually this clinic became an officially named Ataxia clinic, and she was invited to speak at national ataxia patient conferences, which then led to her participation on the medical research advisory board of the National Ataxia Foundation. Her conversations with patients led her to recognize that to offer her patients therapeutics in the pipeline, she needed to become involved in clinical trial work. She began with one coordinator to help with the clinical trial of idebenone in FA in 2007.

II. Mentorship:

Mentorship is important in the pursuit of a clinical trialist career path, as mentors can teach mentees about clinical trial conduct and design, introduce mentees to the relevant professional networks, inform them of appropriate formal training programs and opportunities, and provide them with opportunities to involve themselves in ongoing clinical trials at their institution.

One of Dr. Saver’s mentors during training was key in developing his method in thinking about the patient at the physiologic level to facilitate clinical practice decisions that require extending trial group findings to individual patients. In contrast, as an example of seeking mentors outside of one’s local institution, Dr. Perlman identified a mentor she met at the Cooperative Ataxia Group meeting in October 2001 and subsequently learned much about clinical trial conduct and design from him. For trainees with difficulties finding local mentors, there exist mentorship programs through professional societies (e.g. American Neurological Association MentorLink program) and subspecialty organizations (e.g. American Epilepsy Society Fellows program). The medical community increasingly recognizes the use of social media as a novel way of seeking and promoting mentorship*. Other potential contacts include the medical advisory boards of national support organizations, leaders of the Clinical & Translational Science Institute (CTSI) at one’s local institution, and experienced clinical trialists in other departments (such as neurosurgery or psychiatry), who may share insights about clinical trials research applicable across disciplines.

III. Training, Funding and Key Skills:

While learning the necessary skills through active involvement in clinical trials is an option, there are also a number of training opportunities that aim to help train young investigators in developing and designing scientifically rigorous, yet practical clinical trial protocols. Such training opportunities include the NINDS Clinical Trials Methodology Course and Masters of
Science in Clinical Research programs. Many fellowships will also offer research tracks or a research year. These programs may strengthen knowledge domains such as randomization, subgroup analyses, and clinical blinding. Table 1 includes some of the available programs.

There are funding opportunities for early career neurologists with an interest in clinical research. The NIH offers grant programs such as K23/K08 awards, which are designed to help young investigators develop mentored clinical research proposals, though the K23 program may not favor funding of multicenter trials. There are professional organizations and disease foundations that offer clinical research training grants, which involve variable amounts of protected time for research projects and salary support. Examples include the American Academy of Neurology’s Clinical Research Training Fellowship and the American Heart Association’s Career Development Award.

Skill sets that are unique to a clinical trialist include a strong knowledge of human subjects research and research ethics. It is important to present trials in a manner that is open and non-coercive. One will also need to learn to understand the perspectives of different stakeholders, such as the FDA, sponsor (industry, NIH, etc.), clinicians and patients, while navigating relationships with other parties, such as the data safety and monitoring committee. Collaboration is key in this realm of work and so understanding who key team members will be, such as a biostatistician for the initial study design and the analysis of data, is also important.

IV. Challenges and Setbacks:

Salary support during the early and intermediate career years can be a significant challenge. Reimbursement in a clinical trial environment is often not at an equivalent level of billing for a typical clinical visit. Industry sponsors often compensate for only the time spent on documented responsibilities outlined in the budget, as opposed to offering salary support. The clinical trial budget may provide support for a coordinator, though support for the PI is limited. One way of overcoming this challenge is to increase involvement in clinical trial work over time to eventually sustain one’s own salary. Institutional charges for clinical trials can also make it hard to be revenue positive.

Other challenges in the pursuit of this career path include the low rate of successful agent development in neurology. However, there are hopes for an improved rate of success related to recent improvements in methodological rigor in basic science drug development, improved sophistication in human clinical trial design, and the more efficient use of biomarkers.

V. How to Ascend in the Clinical Trials Space:

Listening to patients and their families, remaining open to what their needs are, and working with patients through patient initiatives may open additional doors for clinical research. Early on, one can also become involved in enrolling patients, managing outcomes assessment visits, or working with a mentor to generate and carry out a secondary analysis proposal early on in their career. Other avenues for entry into this career include serving as a site sub-investigator in multicenter trials, and with that entrée going to investigator meetings to see how clinical trials are run and serving on clinical trial implementation or outcome adjudication committees.
Government-funded studies may have data that later becomes available in open repositories for analysis. Generating secondary publications will facilitate growth opportunities later on.

Opportunities to serve as a sub-investigator may help build experience and publications. In contrast to government-funded clinical trials, industry-sponsored clinical trials do not typically release their data publicly, but sub-investigators have access to the data as trial contributors.

Promotion to associate to full professor may often depend upon leadership in these trials, though if a physician is pursuing a clinician-educator track, participation in a clinical trial is often considered as contributing to the academic and research activities at the institution and looked upon favorably for promotion.

Conclusion:

Identifying an area of interest and then finding a mentor either locally or by networking at conferences are ways to begin embarking on this career path (Figure 1). Other options for involvement include serving as a sub-investigator and then becoming more involved as a member of steering committees. With government-funded clinical trial open databases and industry trials, exploring ideas for secondary publications may also serve as a strong starting point. Finally, remaining grounded in one’s ultimate commitment to patient care and passion for advancing the field of novel therapeutics will assist in building resilience on this career journey.

Table 1. Training opportunities for those pursuing careers in experimental therapeutics

<table>
<thead>
<tr>
<th>Training Opportunity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science in Clinical Research</td>
<td>1-2-year program, often flexibly scheduled to fit in with clinical work, to learn how to design and conduct clinical research (clinical trials and observational/translational research studies) and successfully compete for funding (e.g., foundation grants, NIH K23, or R01’s in clinical research).</td>
</tr>
<tr>
<td>Clinical Research Certificate programs</td>
<td>Program duration can vary from 6 months to 24 months. Offers coursework that provides participants with the training to become successful patient-oriented investigators who can bridge molecular medicine and clinical research. Less intensive than a Master of Science program.</td>
</tr>
<tr>
<td>NINDS Clinical Trials Methodology Course (CTMC)</td>
<td>Annual program spanning from April to November that involves regular small group sessions as well as an intensive portion of the course in July. By the end of this course, participants will have prepared a trial protocol and/or grant proposal, with their experience enhanced by the mentorship and structure of this course. https://nett.umich.edu/training/ctmc</td>
</tr>
<tr>
<td>Fellowship Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NIH-FDA Fellowship in Clinical Trial Methodology and Regulatory Science</td>
<td>Two-year NIH-FDA fellowship, with the option for extension for an additional year, includes hands-on participation in neurology clinical research conducted at the NIH Clinical Center in Bethesda, Maryland, and in neurology clinical research regulatory review at the FDA Federal Research Center in Silver Spring, Maryland. Fellows will participate in activities related to the planning, implementation, conduct, data and safety monitoring, and regulation of trials either conducted or funded by the NINDS and regulated by the FDA.</td>
</tr>
<tr>
<td>AAN Clinical Research Training Scholarships</td>
<td>Two-year program in patient-oriented research, supporting performance of a research project, strong mentoring, and a well-defined clinical research training program for the recipient at their home institution.</td>
</tr>
<tr>
<td>Fellowship in Neurology and Clinical Drug Development, Duke University - UNC-UCB Biosciences Inc.</td>
<td>Two-year fellowship that offers a combination of academic and pharmaceutical industry training to prepare fellows to launch careers in pharmaceutical medicine. Upon completion of training, fellows will have the knowledge and skills to serve as program physicians involved in academic or pharmaceutical industry neurotherapeutic projects. Fellows will design, initiate, conduct and analyze research projects as part of their development programs.</td>
</tr>
<tr>
<td>Experimental Therapeutics Fellowship, University of Rochester Medical Center</td>
<td>Two-year NIH funded fellowship specifically aimed at developing clinical researchers focused on neurotherapeutics in neurology. Fellows are offered clinical training in the neurologic subspeciality of their choice; training in biostatistics, clinical trial design, bioethics, and grant writing; training in the design and conduct of clinical trials, funded by NIH, foundations, and industry; and mentoring for their own independent research projects.</td>
</tr>
</tbody>
</table>
Figure 1. A roadmap for a career as a clinical trialist. This figure highlights a series of possible steps that trainees or neurologists early in their career can take to further a career as a clinical trialist in neurology. The figure highlights potential inflection points of this journey. While this figure is not comprehensive in regards to potential steps or challenges, its aim is to serve as an initial guide to those interested in this career path.

A career as a clinical trialist:
A roadmap for how to embark on this career

A. Identify your area of interest
Identify a neurologic disease or condition or novel therapeutic that you are passionate about.

B. Identify your mentors
Identify mentors, either locally or at another institution, who can inform you of opportunities for involvement in clinical trials research and introduce you to the relevant professional networks.

C. Training programs
Decide if you would like to pursue a training program (Table 1) to strengthen your skills and determine which option would be a strong fit with your timeline and career goals.

D. Get involved
Serve as a subinvestigator on a clinical trial or collaborate with a mentor to conduct a secondary analysis proposal.

E. Funding opportunities
Apply for grant programs (e.g. K23/K08 awards) or a clinical research training grant to support your mentored clinical research proposals.

F. Gain independence
Gain independence as a clinical trialist and serve as a co-PI or PI of a trial. Promotion may depend on trial leadership.

Abbreviations: Clinical and Translational Science Institute (CTSI), Principal investigator (PI)
References

Emerging Subspecialties in Neurology: A Career as a Clinical Trialist in Neurology
Katherine A. Fu, Jeffrey L. Saver and Susan Perlman

Neurology published online April 6, 2022
DOI 10.1212/WNL.0000000000200674

This information is current as of April 6, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/04/06/WNL.0000000000200674.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
All Clinical trials
http://n.neurology.org/cgi/collection/all_clinical_trials
All Education
http://n.neurology.org/cgi/collection/all_education
Gait disorders/ataxia
http://n.neurology.org/cgi/collection/gait_disorders_ataxia
Other Education
http://n.neurology.org/cgi/collection/other_education

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise