Clinical Reasoning: Pediatric Seizures of Unknown Cause

Author(s):
Laura A Tseng, MD1,2; Eva MM Hoytema van Konijnenburg, MD, PhD1,2; Nicola Longo, MD, PhD3; Ashley Andrews, MD, PhD3; Annemiek van Wegberg, PhD1; Karlien LM Coene, PhD1; Curtis R Coughlin II, MD, PhD1; Clara DM van Karnebeek, MD, PhD1,2,7

Corresponding Author:
Clara DM van Karnebeek, clara.vankarnebeek@radboudumc.nl

Affiliation Information for All Authors: 1. Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; 2. On behalf of United for Metabolic Diseases, The Netherlands; 3. Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; 4. Department of Gastroenterology and Hepatology, Dietetics and Intestinal Failure, Radboud University Medical Center, Nijmegen, The Netherlands; 5. Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; 6. Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 7. Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Equal Author Contribution:
Co-first authors: Laura Tseng and Eva Hoytema van Konijnenburg: these authors contributed equally to this work

Contributions:
Laura A Tseng: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Eva MM Hoytema van Konijnenburg: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Nicola Longo: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Ashley Andrews: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Annemiek van Wegberg: Drafting/revision of the manuscript for content, including medical writing for content
Karlien LM Coene: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Curtis R Coughlin II: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Clara DM van Karnebeek: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
2

Table Count:
0

Search Terms:
[78] Neonatal seizures, [153] Metabolic disease (inherited), Pyridoxine dependent epilepsy, lysine reduction therapy

Acknowledgment:
We are grateful to the patients and families for their participation in this study and for teaching us every day about rare diseases and the importance of early diagnosis and effective treatments. We thank our colleagues Monique Dijsselhof Msc, Prof. dr. Bert van den Heuvel, dr. Eduard Struys and Bregie Jaeger, MD for providing care to our patients. We acknowledge clinical and laboratory colleagues involved in the care of these patients.

Study Funding:
United for Metabolic Diseases (UMD) catalyst grant (2020-22).
Abstract

We describe a neonate and a 14-month-old child presenting with seizures that were not (completely) controlled with anti-epileptic medications. There were no signs of infection and electrolytes and neuro-imaging were normal. In the neonate, pyridoxine was administered followed by cessation of seizures and a diagnosis of pyridoxine-dependent epilepsy (PDE-ALDH7A1, a neurometabolic disorder of lysine metabolism) was genetically confirmed. The 14-month-old child received a genetic diagnosis of PDE-ALDH7A1 after abnormalities in the metabolic investigations. Both children were treated with pyridoxine and adjunct lysine reduction therapy (LRT). Seizures were controlled completely, but both children are developmentally delayed. During her second pregnancy, the mother of the neonate was started on pyridoxine treatment due to the risk of PDE-ALDH7A1. After delivery, pyridoxine treatment was continued in the neonate, who did not show any clinical symptoms. Molecular analysis identified the familial mutations consistent with the diagnosis of PDE-ALDH7A1. Adjunct LRT was initiated. This child has never experienced seizures and development has been completely normal thus far (age 2.9 years), despite the shared genotype with their sibling with developmental delays.

In conclusion, in neonates, infants and children presenting with seizures of unknown origin with partial or no response to common anti-epileptic medications, the diagnosis of PDE-ALDH7A1 or other pyridoxine responsive genetic epilepsies should be considered, prompting a trial of pyridoxine as ‘diagnostic therapeuticum’. The digital application Treatable-ID (www.treatable-id.org) can support clinicians in the early diagnosis of treatable conditions in patients presenting with developmental delay/intellectual disability of unknown cause.
Section 1

Case 1

A female neonate, born after an unremarkable pregnancy as first child to non-consanguineous parents, presented at the age of eight days with poor intake, irritability, and abnormal breathing. After a cyanotic event with jerking of the left arm, she was transferred to a tertiary care hospital. Episodes of rhythmic lip pursing and rhythmic waist flexion and extension, accompanied by a scream and mild bilateral hand tremor, developed into a status epilepticus. Following protocol, benzodiazepines, phenytoin and phenobarbital were administered, which abated, but did not resolve the seizures. Brain computed tomography (CT), magnetic resonance imaging and spectroscopy and angiography (MRI/MRS/MRA) were unremarkable. Electroencephalography (EEG) did not capture seizures.

Questions for consideration for patient 1 with status epilepticus:

1. What is the differential diagnosis?
2. What kind of investigations would you initiate at this point?

Case 2

A 14-month-old girl was seen at the outpatient clinic for recurrent generalized seizures. Her medical history included normal psychomotor development but several seizure episodes since the age of eight months and one pediatric intensive care unit admission with status epilepticus. Brain MRI and interictal EEG were normal, lumbar puncture showed no signs of infection and electrolytes were within normal limits. Her parents had not wanted to start anti-epileptic medication yet, except for rectal midazolam as rescue medication.

Questions for consideration for this patient:

3. What is the differential diagnosis for her seizures?
4. Would you initiate investigations at this point? If so, which ones?
The differential diagnosis for neonatal seizures in this patient includes electrolyte disturbance, central nervous system infection, inherited metabolic disorder, epilepsy syndrome and benign convulsions. Cerebral bleeding, infarction, malformation of cortical development and hypoxic-ischemic encephalopathy are highly unlikely given the normal neuro-imaging.

At 10 days of age, a video-EEG did not capture electrographic seizures, but did show excessive discontinuity in wakefulness and NREM sleep, with periods of sharply contoured alpha/theta frequency interrupted by background attenuation, reflecting moderate to severe encephalopathy. Following 100mg intravenous pyridoxine and phenobarbital administration, complete cessation of seizures and improvement on EEG were noted. Oral pyridoxine 30mg/kg/day in 2 dosages was then continued. Targeted single gene testing revealed compound heterozygous mutations in \textit{ALDH7A1} c.834G>A (p.Val278=); c.1489+5G>A, both previously reported\(^2\), confirming the diagnosis pyridoxine-dependent epilepsy (PDE-ALDH7A1). She had borderline gross motor and speech delay.

Adjunct lysine reduction therapy (LRT) was initiated at the age of 1.7 years: a protein-restricted diet with an amino acid mixture (AAM; GlutarAde essentials) and arginine supplementation (150 mg/kg once per day). However, taste issues caused poor adherence.

After LRT initiation, steady developmental progress was made, but speech remained delayed. Biochemically, plasma \(\alpha\)-aminoadipic semialdehyde (\(\alpha\)-AASA) (measured first at age 4.9 years) has always been elevated and varied between 18.9-70.8 \(\mu\)M (reference < 3.1 \(\mu\)M). At the age of 3.7 years, a Wechsler Preschool and Primary Scale of Intelligence (WPPSI) showed a full-scale Intelligence Quotient (FSIQ) of 87, thus within normal limits. At the age of 8.8 years, she is a year behind her peers. She attends mainstream classes with an individualized educational plan for math, language arts and writing with 3.5 hours/day special education support. Since the initiation of pyridoxine, she has remained seizure free.

During her second pregnancy, the mother of case 1 started with prenatal pyridoxine treatment (100mg/day) at 16 weeks gestation due to the risk of PDE-ALDH7A1. After an unremarkable delivery, pyridoxine treatment (30mg/kg/day) was initiated in the female neonate, who did not show any clinical symptoms. Biomarker analysis revealed plasma pipecolic acid (PA) of 26.4 umol/L (ref < 5.2 umol/L) and \(\alpha\)-AASA of 30.0 umol/L (ref < 1.6 umol/L). Molecular analysis identified the familial mutations consistent with the diagnosis of PDE-ALDH7A1. Adjunct LRT (protein restricted diet and arginine supplementation) was initiated at day 16 of life; AAM was started at birth but discontinued due to insurance denial and costs. At age 2.9 years, her speech/language and motor skills are age-appropriate. She has never experienced seizures.
Case 2

The differential diagnosis in this 14-month-old girl with recurrent seizures, normal neuro-imaging and no signs of infection or electrolyte disturbance include genetic (epilepsy syndrome) and an inherited metabolic disorder.

Metabolic investigations were performed in blood, urine and cerebrospinal fluid (CSF) and showed increased PA in CSF and increased urine α-AASA. Molecular analysis (Genbank accession# NM_001182.4) revealed previously unreported (gnomAD, ESP) compound heterozygous variants c.632G>A (p.Cys211Tyr) predicted as likely pathogenic, and c.1415+10T>C p.? shown in vitro to cause nonsense mediated RNA decay. Pyridoxine was initiated from the age of 14 months, arginine supplementation of 250 mg/kg/day at age 5.9 years and a lysine restricted diet (protein intake 1.2 gram/kg/day) at age 6.5 years. AAM was refused by the patient. After LRT initiation, α-AASA decreased by 10-fold. WPPSI at age 6.2 years showed an IQ of 83, Wechsler Intelligence Scale for Children (fourth edition) showed a full-scale IQ of 76 at age 7.3 years. She is enrolled in regular education and after LRT initiation, subjective improvements (improved focus and energy, better social interactions) were noted by mother and teachers. Since the start of pyridoxine, the patient has experienced no further seizures (currently 9 years old).

Discussion

Pyridoxine-dependent epilepsy due to α-AASA-dehydrogenase deficiency (PDE-ALDH7A1) is a neurometabolic disorder of the lysine degradation pathway. Due to the deficiency of the enzyme α-AASA-dehydrogenase, accumulation of α-AASA and its cyclic form Δ-1-piperideine-6 carboxylate (Δ1-P6C) occurs, leading to an inactivation of pyridoxal-5-phosphate (PLP), the active form of vitamin B6. Recently, new biomarkers (2S,6S- and 2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP), and 6-oxopiperidine-2-carboxylic acid (6-oxoPIP)) have been discovered (see Figure 1). PDE-ALDH7A1 is characterized by seizures and the majority of patients suffer developmental delay (DD) or intellectual disability (ID). Typically, PDE-ALDH7A1 presents in the neonatal period, however, atypical, late-onset presentations occur as well, usually milder and with better neurodevelopmental outcomes.

The secondary PLP depletion is overcome by pharmacological doses of pyridoxine, which can control seizures throughout a lifetime and is a ‘diagnostic therapeuticum’. As clearly illustrated by these cases, pyridoxine should be trialed in any neonate or child whose epilepsy is uncontrolled by common anti-epileptic medications. A pyridoxine trial should be initiated directly upon suspected diagnosis, whilst taking the necessary precautions as intravenous administration can cause apnea.
Even in the absence of a direct positive effect, this should be followed by biochemical and molecular confirmation of PDE-ALDH7A1, as pyridoxine does not impact disease biomarkers. This is important for counselling reasons as well, as illustrated by the sibling of case 1.

In addition to PDE-ALDH7A1, the differential diagnosis of pyridoxine-responsive seizures includes other neurometabolic conditions such as neonatal/infantile hypophosphatasia (TNSALP deficiency), hyperprolinemia type II deficiency, PLP binding protein (PLPBP) deficiency and pyridoxamine 5'-phosphate oxidase (PNPO) deficiency. This is not surprising given that PLP acts as cofactor for more than 140 enzymatic reactions, many of which in the central nervous system. Even in the absence of response to pyridoxine, the effect of PLP should be evaluated as PNPO deficiency responds only to this B6 vitamer.

Although individually rare, early identification of IMDs underlying neonatal epilepsy is crucial, as there may be implications for treatment. A two-tiered metabolic algorithm with focus on diagnosis of treatable IMDs (n>70) was proposed by van Karnebeek et al.

Despite adequate seizure control with pyridoxine treatment, PDE-ALDH7A1 outcomes are poor as at least 75% of patients suffer DD/ID. Adjunct LRT can improve neurodevelopmental outcomes in many patients due to lowering of neurotoxic intermediates of the lysine degradation pathway. LRT include a lysine-restricted diet, as substrate limitation, and arginine supplementation, as arginine and lysine compete for transport across the blood-brain-barrier via a cationic transporter. LRT seems most beneficial for neurodevelopmental outcome when started as early as possible, emphasizing the importance of early recognition of PDE-ALDH7A1. As for our case 2, subjective improvements were noted after adjunct LRT initiation and the sibling of case 1, who started LRT very early has a normal neurodevelopment so far, despite having the same genetic variant as their sibling with developmental delays. Prenatal pyridoxine treatment may have influenced neurodevelopmental outcome, although cases have been described of poor outcome despite prenatal treatment.

Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are available and have been updated in 2021. The international PDE registry serves as the basis for PDE-ALDH7A1 research (www.pdeonline.org).

To support clinicians in keeping track of all these developments, we performed a literature review in 2021. The knowledge on 116 treatable IDs was translated into the digital Treatable ID app (freely available via www.treatable-id.org or as native App via Google Play or Apple Store) (Figure 2).

In conclusion, in neonates, infants and children presenting with seizures of unknown origin with partial or no response to common anti-epileptic medications, the diagnosis of PDE-ALDH7A1 or other pyridoxine responsive genetic epilepsies should be considered, prompting a trial of pyridoxine as
diagnostic therapeuticum. Pyridoxine therapy does not affect the diagnostic potential of the disease biomarkers, so samples for biochemical analysis should be taken after initiation of treatment. Alongside, molecular analysis of ALDH7A1 should be initiated. If PDE-ALDH7A1 is confirmed, LRT should be started as adjunct therapy to optimize neurodevelopmental outcomes. If PDE-ALDH7A1 is ruled out, other genetic causes of B6 responsiveness should be investigated.

Figure legends:

Figure 1: Lysine metabolism and Pyridoxine-dependent epilepsy due to α-AASA-dehydrogenase deficiency (PDE-ALDH7A1).
Figure 2: Pyridoxine-dependent epilepsy page in Treatable-ID (www.treatable.org). Treatable-ID is a freely accessible, digital tool to help improve early recognition and intervention for treatable metabolic disorders presenting with intellectual disability, based on a 2021 literature review.

References

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited

