Pearls & Oy-sters: Diagnosis and Subtyping of Listeria Ventriculitis in an Immunocompetent Host

Author(s):
Charlie Weige Zhao, MD1,2; Shujuan Dai, MD3; Qian Wu, MD, PhD3

Corresponding Author:
Qian Wu, qianwu@ydyy.cn

Affiliation Information for All Authors: 1. Yale School of Medicine, New Haven, CT; 2. Department of Internal Medicine, St. Vincent's Medical Center, Bridgeport, CT; 3. Department of Neurology, Kunming Medical University, Yunnan, China

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Equal Author Contribution:

Contributions:
Charlie Weige Zhao: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Shujuan Dai: Major role in the acquisition of data; Analysis or interpretation of data
Qian Wu: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design

Figure Count:
2

Table Count:
0

Search Terms:

Acknowledgment:

Study Funding:
National Natural Science Foundation of China [81601134, 82160260]

Disclosures:
C. W. Zhao reports no disclosures relevant to the manuscript; S. Dai reports no disclosures relevant to the manuscript; Q. Wu receives research funding from the National Natural Science Foundation of China.

Preprint DOI:

Received Date:
2021-11-18

Accepted Date:
2022-03-29
Abstract

Listeria monocytogenes is a gram-positive food-borne pathogen that causes gastrointestinal symptoms and central nervous system (CNS) infection in susceptible hosts. Two lineages of Listeria cause the majority of neurolisteriosis in humans. In this report, we discuss a case of a 23-year-old previously healthy female who presented with acute-onset rapidly progressive altered mental status after eating undercooked meats at a local restaurant. Given her age and lack of comorbidities, bacterial meningitis was suspected, and she was treated with ceftriaxone, vancomycin, and steroids. Magnetic resonance imaging of the brain was consistent with meningitis and ventriculitis; Cerebrospinal fluid (CSF) analysis also suggested bacterial meningitis. Despite mechanical ventilation, pressors, and ventricular drain placement, she quickly decompensated and died 12 hours after arrival. CSF culture later returned positive for Listeria monocytogenes. We used whole genome sequencing and near-source comparison to identify the Listeria subtype that led to her unexpected presentation. The results suggest that her CSF isolate was consistent with a lineage II Listeria serotype, which is known to exhibit greater genetic variation than the more commonly isolated lineage I serotypes. We conclude the discussion with diagnostic and treatment approaches to neurolisteriosis. In susceptible hosts, namely immunocompromised, pregnant, neonatal or elderly patients, Listeria infection may
result in CNS invasion, causing meningoencephalitis and, rarely, ventriculitis and rhombencephalitis. Although neurolisteriosis most commonly affects individuals with known risk factors, CNS infection is nevertheless possible in otherwise healthy young patients. Suspicion should be raised in patients with an exposure history and do not improve with empiric antibiotics.

Pearls

- Although neurolisteriosis most commonly affects immunocompromised, pregnant, neonatal or elderly patients, central nervous system infection is nevertheless possible in otherwise healthy young patients.

Oysters

- In a patient with possible recent exposure, *Listeria* meningitis should be suspected if the patient does not improve with empiric antibiotics that does not cover for *Listeria*.
- Cerebrospinal fluid and clinical findings consistent with bacterial meningitis are less common in *Listeria* meningitis than other causes of bacterial meningitis.
- Ventriculitis is a rare complication of meningitis and can present with elevated intracranial pressure.

Case

A 23-year-old previously healthy female presented with altered mental status. Three days prior, she began experiencing nausea and abdominal pain. Her symptoms progressed to headache, fever, and vomiting. Two hours prior to presentation, she became acutely delirious and confused, prompting her family to bring her to the Emergency Department (ED). She did not have any medical history, including any immunosuppression or chronic infections.
In the ED, she had a temperature of 102.2°F (39°C), pulse 130 beats per minute, respiratory rate 30-38 breaths per minute, and blood pressure 100/53 mmHg. She opened her eyes only to pain, her speech was incomprehensible, and she withdrew upper and lower extremities only to pain (Glasgow Coma Scale = 8). Pupils were symmetric but sluggish with a pupillary diameter of 4mm in ambient light. Physical exam was also positive for meningeal signs (i.e., pain on passive neck flexion).

Labs showed an elevated serum white cell count (13.49 x 10^9/L), C-reactive protein (144.14 mg/L), erythrocyte sedimentation rate (54 mm/h), and lactate (5.59 mmol/L). Cerebrospinal fluid (CSF) showed severe pleocytosis (1629 x 10^6 cells/L) with 90% mononuclear cells, decreased glucose (1.26 mmol/L, CSF:serum glucose ratio 0.09), elevated protein (2.47 g/L), and elevated lactate dehydrogenase (1218 IU/L). Her urine pregnancy test was negative.

Given high suspicion for bacterial meningitis and sepsis (qSOFA score 3/3, SIRS criteria 4/4), she was started on ceftriaxone (2g, IV, q12h), vancomycin (20mg/kg, IV, q12h), and dexamethasone (0.15mg/kg, IV, q6h).

20 minutes after arrival, she became apneic and unresponsive and was emergently intubated. Pupils were symmetrically dilated at 6.5mm with no pupillary reflexes. Magnetic resonance imaging (MRI) of the brain showed lateral ventriculomegaly, intraventricular debris, periventricular hyperintensity, and ependymal enhancement, consistent with meningitis complicated by ventriculitis and obstructive hydrocephalus (Figure 1). A ventricular drain was placed by neurosurgery.

Unfortunately, she was persistently hypotensive despite fluid resuscitation and pressor support. The patient died 12 hours after arrival. One day later, Listeria monocytogenes was identified.
from the CSF via metagenomics and later confirmed by culture (Figure 2). Meanwhile, extensive rheumatology and infectious disease workup (including human immunodeficiency virus serology) came back negative. On re-examination of her history, it was found that three days before presentation she had lunch with a friend at a restaurant where she ate self-cooked pork, beef, and chicken. Her friend was asymptomatic.

We subsequently performed genetic testing of the CSF isolate using next-generation whole genome sequencing and compared the results to near-source species using nucmer (Bioyi Biotechnology, Wuhan, China). This identified the isolate as being closest to *Listeria monocytogenes* serotype 1/2c, strain NH1.

Discussion

L. monocytogenes is a gram-positive, facultative anaerobic intracellular rod-shaped bacterium, classically described to exhibit “tumbling motility” on light microscopy. There are 17 species of the genus *Listeria*, of which *L. monocytogenes* most commonly infects humans. *Listeria* was recognized as a food-borne pathogen in the 1980s, and although outbreaks are rare, it causes significant morbidity and mortality in susceptible hosts.

Demographically, our patient was a young woman without any of the traditional risk factors of neurolisteriosis. In immunocompetent young patients, listeriosis typically manifests as a febrile gastroenteritis consisting mainly of self-limited diarrhea. Susceptible hosts consist of three groups: 1) those with immunosuppression, such as patients on medications that suppress cell-mediated immunity; 2) those at the extremes of age, including neonates and adults greater than 50 years old; and 3) pregnant women. In these individuals, *Listeria* infection can result in bacteremia and central nervous system (CNS) infection. As our patient was young, previously
healthy, not immunosuppressed, and not pregnant, her recent exposure history to potentially undercooked meats was initially overlooked and was only discovered after the diagnosis of *Listeria* infection was made.

Clinically, CNS *Listeria* most commonly manifests as meningitis and meningoencephalitis, and less commonly as rhombencephalitis (focal brainstem infection) and brain abscess\(^5\). Like other forms of bacterial meningitis, fever and altered mental status are the most common findings in CNS listeriosis. Although our patient exhibited signs of meningeal irritation, patients with *Listeria* meningitis often do not exhibit specific meningeal signs, unlike meningitis due to other bacteria\(^4\). Ventriculitis, more commonly seen in post-neurosurgery patients such as those with ventricular indwelling devices, may occur as a rare complication of meningitis. One case of *Listeria* ventriculitis has been reported in a 78-year-old immunocompetent patient\(^6\) and other cases in pediatric patients or neonates. However, ventriculitis by itself is not specific or unique to neurolisteriosis, thus our initial empiric antibiotic coverage consisted of intravenous vancomycin and a third-generation cephalosporin\(^7,8\), which does not cover *Listeria*. Due to the emergent nature of this patient’s progression in the ED, it would not be unreasonable to broaden her antibiotic coverage to include *Listeria*. Given her normal fundoscopic exam and absence of specific signs at presentation, elevated ICP was initially not suspected. Once florid ventriculitis and elevated ICP were established, the priority became lowering of ICP through neurosurgical intervention while simultaneously addressing the underlying cause\(^9\).

Diagnosis of CNS listeriosis is typically performed using a combination of clinical, CSF, and MRI findings, and confirmed using blood or CSF culture or PCR. Pleocytosis in the CSF indicates CNS inflammation and may be seen in a variety of infectious or autoimmune conditions\(^10\). Our patient had a severe neutrophil-predominant pleocytosis suggestive of bacterial
or early viral meningitis. However, it should be noted that pleocytosis may be absent in 1-12% of bacterial meningitis cases and neutrophil predominance has poor discriminatory power for bacterial versus viral meningitis. CSF glucose is related to the degree of pleocytosis and a CSF:serum glucose ratio <0.5, as seen in our patient, along with a CSF protein >1.5g/L and elevated CSF lactate dehydrogenase, is consistent with bacterial rather than viral meningitis. Of note, these “classic” CSF chemistry findings of bacterial meningitis (i.e., high protein, low glucose) is present in only 77% of cases of Listeria meningitis, and gram staining for Listeria misses about two-third of cases, suggesting the need to have a relatively low threshold to treat at-risk patients who have an atypical presentation for bacterial meningitis.

Treatment for Listeria meningitis is ampicillin or penicillin G, or alternatively trimethoprim-sulfamethaxaole or meropenem, for at least 21 days. The addition of an aminoglycoside such as gentamicin may have a synergistic effect and could be considered, although the potential for renal failure limits its general use. In a large prospective study, adjunctive dexamethasone was associated with increased mortality in CNS listeriosis, thus it is no longer recommended. Despite the relatively available antibiotic therapies, globally neurolisteriosis remains highly morbid, with a mortality rate of around 30%. In our case, septic shock was the most likely cause of death.

The question remains as to why our patient, a healthy immunocompetent host, manifested with Listeria ventriculitis, whereas her friend was asymptomatic. Although genotyping Listeria subtypes is not typically performed in clinical practice, as it has little implications for treatment or prognosis, we pursued genetic subtyping to further investigate pathogen factors that may contribute to the patient’s presentation, which we briefly discuss below.
The mechanism by which *Listeria* infects the nervous system is unknown. One proposed mechanism involves hematogenous spread, whereby the bacteria invade intestinal mucosa and gain access to the bloodstream. From there, *Listeria* may use internalin (Inl) proteins InlA and InlB to interact with E-cadherins and Met proteins present on choroid plexus epithelial and brain endothelial cells to gain entry through the blood-brain barrier. An alternative hypothesis posits that bacteria cells are taken up by host phagocytes, escape from phagosomes using a pore-forming toxin listeriolysin O (LLO), then move into the cell cytosol via actin assembly-inducing protein (ActA), thus gaining access to the CSF space through these phagocytes²⁻⁵.

Phylogenetic studies have identified 4 evolutionary lineage of *L. monocytogenes*, of which isolates from lineages I (serotypes 1/2b, 3b, 4b, 4d, 4e) and II (serotypes 1/2a, 1/2c, 3a, 3c) are implicated in the majority of human outbreaks¹³. In our genetic analysis using whole genome sequencing and near-source species comparison, the three strains with the highest similarity to the patient’s isolate are lineage II serotypes (strain NH1, serotype 1/2c, similarity 0.978268; strain SLCC2479, serotype 3c, similarity 0.978242; strain 2018TE5305-1-4, serotype 1/2a, similarity 0.978107). Animal studies suggest lineage I serotypes exhibit greater virulence, possibly because lineage II serotypes overexpress truncated InlA proteins¹⁴, whereas lineage II serotypes exhibit greater genomic plasticity¹⁵. One might hypothesize that lineage II subtypes of *Listeria* may have a higher propensity for CNS invasion in otherwise healthy adults, such as in our case, although more systematic studies are needed to elucidate the mechanism.

References

Figure Legends

Figure 1. MRI images obtained at the time of admission. A: T1-weighted image showing ventriculomegaly of the lateral ventricle. B: Post-contrast T1-weighted image showing leptomeningeal enhancement. C, D: FLAIR images showing periventricular hyperintensity and debris in the occipital horns of the lateral ventricles.
Figure 2. Gram stain of CSF culture showing *Listeria* organisms at 10x magnification.
Pearls & Oy-sters: Diagnosis and Subtyping of Listeria Ventriculitis in an Immunocompetent Host
Charlie Weige Zhao, Shujuan Dai and Qian Wu
Neurology published online May 4, 2022
DOI 10.1212/WNL.0000000000200732

This information is current as of May 4, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/05/04/WNL.0000000000200732.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Bacterial infections
http://n.neurology.org/cgi/collection/bacterial_infections
Critical care
http://n.neurology.org/cgi/collection/critical_care
Encephalitis
http://n.neurology.org/cgi/collection/encephalitis
Meningitis
http://n.neurology.org/cgi/collection/meningitis
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.