Teaching NeuroImage: Primitive Drainage Pattern of Basal Vein of Rosenthal: An Under-Recognized Cause of Perimesencephalic Subarachnoid Hemorrhage

Author(s):
Konstantinos Melanis, MD¹; Maria-Ioanna Stefanou, MD¹; Ioanna Tsantzali, MD¹; Efi Tsomaka, MD¹; Maria Chondrogianni, MD¹; Eleni Bakola, MD¹; Elizabeth Andreadou, MD²; Stefanos Lachanis, MD³; Georgios Tsvougis, MD¹

Corresponding Author:
Georgios Tsvougis, tsvougisgiorg@yahoo.gr

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece; 2. First Department of Neurology, National & Kapodistiran University of Athens, School of Medicine, "Eginition" University Hospital, Athens, Greece; 3. Iatropolis Magnetic Resonance Diagnostic Centre, Athens, Greece.

Equal Author Contribution:

Contributions:
Konstantinos Melanis: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Maria-Ioanna Stefanou: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Ioanna Tsantzali: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Efi Tsomaka: Drafting/revision of the manuscript for content, including medical writing for
content; Analysis or interpretation of data

Maria Chondrogianni: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Eleni Bakola: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Elizabeth Andreadou: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Stefanos Lachanis: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Georgios Tsivgoulis: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:

2

Table Count:

0

Search Terms:

A previously healthy 43-year-old man presented with coital thunderclap-headache. Brain Computed-Tomography (CT) revealed a perimesencephalic subarachnoid
hemorrhage (PMSAH). Digital Subtraction Angiography (DSA) showed a severe basilar-artery vasospasm without underlying aneurysm (Figure-1). Under nimodipine treatment, the vasospasm resolved gradually. At 1-month follow-up, high-resolution (3T) magnetic-resonance-imaging (HR-MRI) uncovered a primitive left basal vein of Rosenthal (BVR) draining to the lateral mesencephalic veins instead of the Galenic system.\(^1\)

Approximately one-half of non-aneurysmal-PMSAH are associated with primitive venous drainage variants (Figure-2).\(^2\) These variants have been linked to hemodynamic perturbations, inducing retrograde flow, abrupt pressure changes and venous rupture resulting in PMSAH.\(^2\) BVR-patients harbor a 4-fold increased risk for non-aneurysmal-PMSAH compared to aneurysmal-SAH.\(^1\) Given the frequent unavailability of venous-phase DSA, HR-MRI should be considered for the evaluation of primitive-BVR and underlying venous anomalies in PMSAH. In patients with typical PMSAH, identification of primitive-BVR by HR-MRI provides an underlying etiopathogenetic mechanism, that may render a repeat-DSA redundant.\(^1\)


References


2. Van Der Schaaf, I. C., Velthuis, B. K., Gouw, A. & Rinkel, G. J. E. Venous
Figure 1

Title

Imaging findings of a patient with perimesencephalic subarachnoid hemorrhage due to primitive drainage of Basal vein of Rosenthal (BVR)

Figure Legend

Non-contrast axial brain computed tomography (CT) scan on admission shows hyperdense signal in the basal cistern corresponding to perimesencephalic subarachnoid hemorrhage (A). No evidence of aneurysm is depicted on axial CT-Angiography (B). Sagittal digital subtraction angiography (DSA) shows a severe basilar artery vasospasm (black arrow) (C), but no evidence of aneurysm or venous anomalies (venous phase of DSA not shown). At one-month follow-up, high-
resolution magnetic-resonance-imaging (HR-MRI) in sagittal plane of 3D T1 MP RAGE sequence shows a discontinuous drainage of BVR (yellow arrow) to the vein of Galen (blue arrow) (D). In axial plane of the same sequence, veins of the interpeduncular cistern drain to the left BVR (yellow arrow). Note that the BVR does not follow its typical course to drain to the vein of Galen (blue arrow indicates the normal course of BVR), this finding corresponds to a primitive BVR variant (E). Following the course of BVR at the pontine level (yellow arrow), we note drainage to the right tentorial sinus (F). Of note, that following the resolution of basilar artery vasospasm at one-month follow-up, no evidence of underlying aneurysm was detected on magnetic resonance angiography (MRA) (images not shown).
Figure 2

Title

Different variants of Basal Vein of Rosenthal (BVR) drainage

Figure legend

Sagittal view of brain venogram: BVR (orange arrow), vein of Galen (red arrow), straight sinus (light green). In Panel A there is continuous drainage of BVR into the vein of Galen (typical continuous type). Panel B illustrates a primitive drainage of BVR such as in our case, which is associated with perimesencephalic subarachnoid hemorrhage. BVR does not follow its typical course to the vein of Galen (black curved arrow). The anterior part (orange arrow) drains to the petrosal sinus (dark green arrows) whereas the middle and posterior parts are missing. Disturbed venous drainage results into increased retrograde venous pressure, which eventually results into subarachnoid hemorrhage. Panel C illustrates another BVR anatomical variant (not observed in our patient) associated with subarachnoid hemorrhage. Discontinuous drainage of BVR is noted (dotted line), with the anterior part (black arrow) draining to the cavernous sinus, while the posterior part (dark green) drains to the vein of Galen.
Teaching NeuroImage: Primitive Drainage Pattern of Basal Vein of Rosenthal: An Under-Recognized Cause of Perimesencephalic Subarachnoid Hemorrhage
Konstantinos Melanis, Maria-Ioanna Stefanou, Ioanna Tsantzali, et al.
Neurology published online May 18, 2022
DOI 10.1212/WNL.0000000000200777

This information is current as of May 18, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/05/18/WNL.0000000000200777.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
Subarachnoid hemorrhage
http://n.neurology.org/cgi/collection/subarachnoid_hemorrhage

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.