Child Neurology: Aicardi-Goutières Syndrome Presenting as Recurrent Ischemic Stroke

Author(s):
Shen-yi Kuang, MD; Yao Li, MB; Shi-Lin Yang, MD; Xiang Han, MD

Corresponding Author:
Xiang Han, hansletter@fudan.edu.cn

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Affiliation Information for All Authors: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China

Equal Author Contribution: Shen-yi Kuang and Yao Li contributed equally to this work. Xiang Han and Shi-lin Yang are co-senior authors.

Contributions:
Shen-yi Kuang: Major role in the acquisition of data; Additional contributions: manuscript drafting - manuscript drafting - Yao Li supervision; critical revision of manuscript - Shi-Lin Yang supervision; critical revision of manuscript - Xiang Han Yao Li: Major role in the acquisition of data; Additional contributions: manuscript drafting - Shen-yi Kuang manuscript drafting - supervision; critical revision of manuscript - Shi-Lin Yang supervision; critical revision of manuscript - Xiang Han Shi-Lin Yang: Study concept or design; Additional contributions: manuscript drafting - Shen-yi Kuang manuscript drafting - Yao Li supervision; critical revision of manuscript - supervision; critical revision of manuscript - Xiang Han Xiang Han: Study concept or design; Additional contributions: manuscript drafting - Shen-yi Kuang manuscript drafting - Yao Li supervision; critical revision of manuscript - Shi-Lin Yang supervision; critical revision of manuscript

Figure Count: 1

Table Count: 1


Acknowledgment:

Study Funding: This work was supported by Shanghai Municipal Health Commission (20204Y0425)
Aicardi-Goutières syndrome (AGS) is a rare, single-gene disorder, characterized by neurological and skin involvement with an increased level of interferon-α (IFN-α) in the cerebrospinal fluid (CSF). We describe the case of a young patient presenting with recurrent ischemic stroke. Evaluation revealed the presence of chilblains, white matter abnormalities, cerebral atrophy, and raised IFN-α in the CSF. Compound heterozygous variants of TREX1 were detected, confirming a diagnosis of AGS. After excluding other causes, we attributed the stroke to AGS. Tofacitinib, a Janus kinase (JAK) inhibitor, was administered to our patient in addition to antiplatelet drugs. There was no recurrence of stroke during 3-month follow-up. This is the first description of recurrent stroke in TREXI-mutated AGS. Small vessel involvement has been previously demonstrated to play a significant role in the pathogenesis of AGS. This microvascular mechanism might explain the occurrence of ischemic stroke in our patient. For young stroke patients with multiple system involvement, genetic disorders including AGS should be considered.
SECTION 1
A 16-year-old Chinese girl was referred to our center for sudden onset of right upper and lower limb weakness, double vision, and cognitive decline. No limb numbness, aphasia, or vertigo was reported. She had experienced left medullary infarction (Figure, A) 1 year ago without sequelae. Since then, she had been prescribed aspirin and atorvastatin. She had undergone surgical repair of a ventricular septal defect at age 2. Family history was negative.

Neurological examination demonstrated cognitive impairment with a mini-mental state examination (MMSE) score of 17/30. Ocular movements were normal except for partial limitation of infraduction of the left eye. There was no ptosis. Mydriasis was evident in the left eye, with sluggish pupillary light reflex. Central right facial palsy was noted. Strength was 4/5 in the right limbs, with normal muscle tone and reflexes. Babinski sign was positive on the right. No signs of sensory disturbance and ataxia were found.

Questions for consideration:
1. Where do you localize the lesion?
2. What is the most likely cause of this presentation?

SECTION 2
Cognitive impairment suggested the involvement of cortices or essential subcortical structures such as thalamus. The upper motor neuron paralysis of the right limbs and face was localized to the left pyramidal tract (above the nucleus of the facial nerve). Infraduction limitation and mydriasis of the left eye was localized to the left oculomotor nerve or midbrain.

Computed tomography (CT) of the head showed mild cerebral atrophy. Magnetic resonance (MR) imaging revealed acute infarction involving the left thalamus, thalamo-mesencephalic junction, and oculomotor nerve fascicles (Figure, B), consistent with our clinical localization. Mild white matter hyperintensities around bilateral ventricles (Figure, C), lacunes in the brainstem, and mild cerebral atrophy
were also demonstrated. Given the acute onset of symptoms, previous ischemic stroke, and typical radiological findings, acute ischemic stroke was diagnosed.

CT angiography of the neck, MR angiography of the head and high-resolution MR vessel wall imaging of the vertebral and basilar arteries were normal (Supplementary eFigure). Holter monitoring for 24-hours was unremarkable. Both non-contrast and contrasted transthoracic echocardiogram were unremarkable except for previous repair of ventricular septal defect, showing no right-to-left shunt. Her laboratory profile was normal, including blood counts, renal and hepatic function, coagulation function, and thyroid function. Antinuclear antibodies were positive with a titer of 1:100. Extractable nuclear antigen antibodies, antineutrophil cytoplasmic antibodies, anticardiolipin antibody, lupus anticoagulant, β-2 glycoprotein 1 antibody, and rheumatoid factor were all negative. Erythrocyte sedimentation rate was 41mm/h (normal ≤15mm/h) with normal C-reactive protein and anti-streptolysin O levels.

Questions for consideration:

1. How would you further investigate the cause of recurrent stroke?

SECTION 3
Negative results of large vessel and cardiac evaluations prompted us to seek uncommon causes of recurrent stroke in an adolescent patient. Additional history revealed that starting at age 5 the patient had chilblains - erythematous skin lesions - which were located in the hands, legs and feet, and more severe in the winter. She had suffered from mild mental retardation and blurred vision since childhood. During this hospitalization, we observed chilblains in the above-mentioned areas, most severe in the hands (Figure, E). Ophthalmologic consultation was obtained. Best-corrected visual acuity was 20/25 OD and 20/40 OS. Optical coherence tomography showed thinning of the retinal nerve fiber layer in the left eye.

Given the multiple organ (brain, skin, and eyes) involvement from childhood, we suspected a genetic disorder. Whole-exome sequencing was performed, revealing
compound heterozygous variants of \textit{TREX1}, one missense variant (c.290G>A, p.R97H) and one frameshift variant (c.294dupA, p.C99Mfs*3) (NM_033629) \textbf{(Figure, D)}. Sanger sequencing confirmed the maternal-origin of c.294dupA and paternal-origin of c.290G>A.

\textbf{Questions for consideration:}
1. \textbf{How would you diagnose the patient?}
2. \textbf{What would be the appropriate management strategy?}

\textbf{SECTION 4}
Both variants have been identified in Aicardi-Goutières Syndrome (AGS) (1). AGS is a rare, genetic disorder characterized by neurological manifestations and skin involvement (mainly chilblains) with an increased level of interferon-\(\alpha\) (IFN-\(\alpha\)) in the cerebrospinal fluid (CSF). Skin biopsy of the lesions on the hand of our patient was performed, and histopathological examination showed perivascular lymphocyte infiltration \textbf{(Figure, F)}. Lumber puncture demonstrated an opening pressure of 120 mmH\(_2\)O, leukocytes of 6 cells/mm\(^3\), elevated protein of 1165 mg/L, and glucose of 2.4 mmol/L (paired plasma glucose 6.2 mmol/L). CSF oligoclonal bands were negative. Tumor cells or pathogens were not found. IFN-\(\alpha\) in CSF was elevated at 4.5 pg/ml (normal range: 0-0.2 pg/ml).

In the presence of mental retardation, recurrent stroke, chilblains, ophthalmologic findings, cerebral atrophy, an elevated INF-\(\alpha\) level in the CSF, and compound heterozygous mutations in \textit{TREX1}, the diagnosis of AGS was confirmed. A case of \textit{TREX1}-mutated AGS with stroke has been previously reported (2). After excluding other causes of stroke, we favored that our patient's recurrent stroke was attributed to AGS.

Janus kinase (JAK) inhibitors have been reported to be effective in treating patients with AGS (3, 4). Therefore, our patient was placed on Tofacitinib, a JAK inhibitor, in addition to antiplatelet drugs. Her neurological symptoms including limb weakness, diplopia, and cognition impairment improved markedly 1 month after the stroke.
There was also substantial improvement of her chilblains. There was no recurrence of stroke during 3-month follow-up.

**Discussion**

AGS is a rare, juvenile-onset, multisystem, single-gene disorder. AGS can be diagnosed by confirmed genetic mutations, or when no molecular confirmation is available, a clinical and laboratory phenotype suggestive of AGS (5) (Table 1). There are at least seven genes associated with AGS. Mutations in the *TREX1* gene accounts for approximately 24% of all AGS cases. Other causative genes include *RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR*, and *IFIH* (1). AGS is mainly inherited in an autosomal recessive pattern but occasionally can be autosomal dominant (6, 7).

AGS varies in severity, from a severe neonatal form to a milder, late-onset type (8). Typically, patients have onset of symptoms in the early age of life, especially for those carrying mutations in *TREX1*, and often present with an acute encephalitic phase and failure to progress in motor and mental skills (9). Around 1 in 4 patients die between the age of 1 and 17 years. Some patients have survived past 40 years of age (10). Our patient presented with a milder, later-onset phenotype.

AGS most commonly affects the brain and the skin (6). Neurological manifestations include feeding difficulties, irritability, epileptic seizures, generalized dystonia, spasticity, cognitive disability, and microcephaly (6). Stroke and visual problems have also been reported in late-onset patients (9). Chilblains, which are erythematous skin lesions usually at acral locations triggered by cold temperature, are present in more than 40% of AGS patients and are associated with mutations in all the seven causative genes, especially *TREX1* (7, 8). Other extra-neurological features include hepatosplenomegaly, anemia, thrombocytopenia and elevated liver transaminases (9). Brain calcification, white matter abnormalities, and cerebral atrophy are the classic radiographic features of AGS (11). In some of the late-onset patients, classic calcifications and cerebral atrophy are lacking (12).

Lymphocytosis with more than 5 cells/mm$^3$ and/or an elevated IFN-α level in the CSF...
has been documented in the diagnosis criteria of AGS (5). Lymphocytosis and an elevated IFN-α level are permanent CSF findings in most patients, although the extent diminishes slightly with age (10).

Stroke has been previously reported in several other cases of AGS (2). Most of the cases were caused by \textit{SAMHD1} mutations, and one case associated with \textit{TREX1} mutation has been reported (2). This \textit{TREX1}-mutated AGS patient was a child, carrying the same \textit{TREX1} variant of c.290G>A as our patient (2). However, the stroke was revealed by a routinary MRI and the timing of the ischemic event was unclear (2). To our knowledge, this is the first description of recurrent stroke in \textit{TREX1}-mutated AGS, expanding the clinical spectrum of AGS.

Pathophysiologic mechanisms of AGS are not fully understood. The hypothesis is that a mutated protein could lead to an accumulation of cytosolic nucleic acids, and subsequently trigger an INF-α-mediated immune response (10). Rasmussen et al. reported post-mortem evidence of thrombotic microangiopathy in the brain of a patient with AGS (13). Barth et al. also demonstrated small vessel involvement which played a significant role in the pathogenesis of AGS based on brain autopsy (14). Chilblain is a kind of distal small vessel disease of the skin (15). With histopathological evidence of cerebral and extracerebral vascular involvement, AGS may be considered to be a genetic microvascular disease (15). The microvascular mechanism might explain the recurrence of ischemic stroke in our patient.

Baricitinib, a JAK inhibitor, which blocks interferon activation, proved to be effective in the treatment of chilblains in AGS patients (3). Tofacitinib, another JAK inhibitor, has also been reported to be effective in the treatment of skin lesions (4). However, JAK inhibitors’ effect on stroke prevention is unknown.

Herein, we report recurrent ischemic stroke as a novel clinical manifestation of \textit{TREX1}-mutated AGS. For young stroke patients with multiple system involvement, genetic disorders including AGS should be considered.
References:


Figure Legends

Figure. Brain magnetic resonance (MR) imaging, pedigree, chilblains, and histopathological result of the skin biopsy

A, Diffusion weighted-MR imaging showed acute medullary infarction (white arrow) at the age of 15; B, Diffusion weighted-MR imaging showed acute infarction involving left thalamus (blue arrow), thalamo-mesencephalic junction (white arrow) and oculomotor nerve fascicles (red arrow) at the age of 16; C, T2 fluid attenuated inversion recovery (FLAIR) MR imaging showed mild white matter abnormalities (white arrow); D, The patient carried two TREX1 variants (c.290G>A, p.R97H and c.294dupA, p.C99Mfs*3) (NM_033629), inherited from her father and mother respectively; E, Chilblains on the hands of the patient; F, Histopathological examination of the skin lesions showed perivascular lymphocytes infiltration (black arrows).
Table 1. Causative genes and clinical features of Aicardi-Goutières syndrome

<table>
<thead>
<tr>
<th>Genes</th>
<th>TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR and IFIH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset age:</td>
<td>Usually under one year of age (Age at diagnosis may be up to 40s’)</td>
</tr>
<tr>
<td>Neurological symptoms:</td>
<td>psychomotor delay, spasticity, dystonia, epileptic seizures and microcephaly, stroke, and visual problems</td>
</tr>
<tr>
<td>Skin symptoms:</td>
<td>Chilblains</td>
</tr>
<tr>
<td>Other organ involvement:</td>
<td>Anemia, thrombocytopenia, interstitial lung disease, pulmonary hypertension, hepatosplenomegaly, elevated liver transaminases, intermittent sterile pyrexias, hypothyroidism, insulin dependent diabetes mellitus, scoliosis, cardiomegaly, and glaucoma</td>
</tr>
<tr>
<td>Neuroimaging</td>
<td>White matter abnormalities</td>
</tr>
<tr>
<td>Cerebral calcification (may be absent in the late onset patients)</td>
<td></td>
</tr>
<tr>
<td>Brain atrophy (may be absent in the late onset patients)</td>
<td></td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>Chronic lymphocytosis ( &gt; 5 cells/mm³)</td>
</tr>
<tr>
<td></td>
<td>Raised interferon-α in the cerebrospinal fluid</td>
</tr>
</tbody>
</table>
Child Neurology: Aicardi-Goutières Syndrome Presenting as Recurrent Ischemic Stroke
Shen-yi Kuang, Yao Li, Shi-Lin Yang, et al.
Neurology published online July 8, 2022
DOI 10.1212/WNL.0000000000200952

This information is current as of July 8, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/07/08/WNL.0000000000200952.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Genetics
http://n.neurology.org/cgi/collection/all_genetics
Stroke in young adults
http://n.neurology.org/cgi/collection/stroke_in_young_adults

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise