Nonalcoholic Fatty Liver Disease and Risk of Dementia: A Population-Based Cohort Study

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Abstract

Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) and dementia share common risk factors including metabolic disorders. However, whether NAFLD is associated with dementia risk is unclear. We investigated the association between NAFLD and dementia risk as well as the role of cardiovascular complications including heart disease and stroke.

Methods: In this population-based matched cohort study, we identified all Swedish patients aged ≥65 years with NAFLD identified from the National Patient Register (NPR) between 1987 and 2016. These were matched with up to ten reference individuals from the general population on age, sex, and municipality at the year of diagnosis. Incident dementia diagnosis was derived from the NPR or the Cause of Death Register until 2016. Adjusted hazard ratios (aHR) and 95% confidence intervals (CI) were estimated with Cox regression models.

Results: A total of 2898 patients with NAFLD and 28357 matched controls were identified (median age at entry, interquartile range [IQR], 70 [8]; 55.1% female). During a median follow-up of 5.5 years (IQR: 8.5 years), 145 (5.0%) patients with NAFLD and 1291 (4.6%) reference individuals were diagnosed with dementia. Compared to the reference individuals, patients with NAFLD had higher rates of dementia (aHR 1.38, 95% CI 1.10–1.72) and vascular dementia (aHR 1.44, 95% CI 0.96–2.23, p=0.07). Comorbid NAFLD and either heart disease (aHR 1.50 95% 1.08–2.05) or stroke (aHR 2.60 95% CI 1.95–3.47) conferred a greater risk of dementia.

Discussion: NAFLD had a modest association with increased rates of dementia. This was stronger among patients with NAFLD diagnosed with cardiovascular comorbidities.
Classification of Evidence: This study provides Class II evidence that non-alcoholic fatty liver disease is associated with the development of vascular and non-vascular dementia.

Background

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting 25% of the global population.\(^1\) NAFLD is associated with metabolic disorders and is commonly seen as the hepatic manifestation of the metabolic syndrome, and acquiring additional components of the metabolic syndrome, such as type 2 diabetes or hypertension, has been associated with a higher risk of dementia.\(^2\)\(^-\)\(^5\) While such metabolic disorders are not unique for NAFLD or dementia, it is unclear if NAFLD contributes to dementia independent of these factors.

As problems with attention, forgetfulness, and memory have often been reported among patients with NAFLD,\(^6\)\(^,\)\(^7\) a link between NAFLD and poor cognition has been suggested. Notably, studies examining the association between NAFLD and cognitive outcomes have been mostly limited to mild cognitive impairment, with a cross-sectional design.\(^8\)\(^-\)\(^11\) Very few longitudinal observational studies have examined the risk of dementia in NAFLD. One recent cohort study found that elevated liver enzymes were associated with a higher risk of Alzheimer’s disease (AD) and greater brain atrophy.\(^12\) Another study reported a higher risk of all-cause dementia in patients with both liver fibrosis due to NAFLD and frailty.\(^13\) In contrast, other studies failed to find a link between NAFLD and cognitive decline,\(^14\) and incident dementia.\(^15\)\(^,\)\(^16\)

The major hypothesis linking NAFLD to cognition is through a vascular pathway.\(^9\) Indeed, compared to individuals without NAFLD, patients with presumed liver fibrosis due to NAFLD exhibited signs of executive function deficits,\(^11\) and more pronounced white matter lesions.\(^17\)
These are the early markers of functional and structural impairments in vascular dementia. In addition, the risk of dementia may be further elevated by cardiovascular diseases, as these conditions are often concomitant, and cardiovascular diseases are the leading cause of death for patients with NAFLD. However, the possible joint effect of NAFLD and cardiovascular diseases on dementia risk are not well known. Therefore, our aims were to 1) investigate the impact of NAFLD on the risk of dementia, dementia subtypes, and 2) examine the role of comorbid cardiovascular disease on these associations.

Methods

Study population

We conducted a cohort study of all patients aged ≥65 years with an International Classification of Diseases (ICD) code corresponding to NAFLD (ICD-9:571.8; ICD-10: K75.8 or K76.0) from the National Patient Register (NPR) between January 1st, 1987, and December 31st, 2016. The NPR includes data from inpatient care with national coverage since 1987 and includes all visits in specialized outpatient care since 2001. The validity of NPR is regarded as high, with positive predictive values ranging from 85% to 95% for most chronic diseases including CVD. The PPV of a NAFLD diagnosis from NDR is 89%. Furthermore, the PPVs for dementia diagnosis from NPR and CDR are 81% and 99%. We defined the index date as the date of the first NAFLD diagnosis and the age at diagnosis was obtained for all patients. Each patient with NAFLD was then matched with up to ten individuals from the general population without a previous diagnosis of NAFLD (matched cohort) randomly selected from the Total Population Register on age, sex, and municipality at the year of diagnosis. We excluded patients with a diagnosis of NAFLD prior to age 65 because 80% of NAFLD diagnosis were made since 2001.
and the median age of dementia diagnosis in Sweden is 85 years, meaning that the number of dementia outcomes in younger patients would be low. We further excluded those with prevalent or subclinical dementia, and those with other liver diseases on or prior to the index date both in patients with NAFLD and the matched cohort (eTable1 in the Supplement lists the ICD-based definitions of these). Figure 1 shows the flowchart of the study population.

Study outcomes and covariates

Dementia was defined as having an ICD code corresponding to dementia (ICD-9: 290; ICD-10: F00-03, G30-31) from the NPR or the Cause of Death Register (CDR). The CDR is a high-quality data source which contains information on the date of death, and underlying and contributing causes of death for all deceased inhabitants of Sweden. We also identified dementia subtypes, defined as Alzheimer’s disease (ICD-9: 290.1, 331.0; ICD-10: F00, G30), and vascular dementia (ICD-9: 290.4; ICD-10: F01). Of note, the ICD-9 code of subclinical AD (290.1) was used to exclude AD at baseline, but not to define the outcome.

Age at index date was categorized into three groups: 65 to 74, 75 to 84, and \(\geq \)85 years. Diagnoses of cirrhosis, depression, and relevant metabolic disorders including both type 1 and type 2 diabetes, dyslipidemia, obesity, and hypertension, that all may affect dementia risk, recorded at or prior to the index date were identified from the NPR. Cardiovascular complications including stroke (ischemic or hemorrhagic) and heart disease (HD) (coronary heart disease, atrial fibrillation, or heart failure) recorded at or prior to the index date were also collected from the NPR (see eTable 1 in the Supplement for ICD codes).
Statistical analysis

Baseline characteristics of patients with NAFLD and the matched cohort were compared with Chi-square tests for categorical variables and Mann–Whitney U tests for continuous variables. Patients with NAFLD and the matched cohort were followed from the index date to the date of dementia diagnosis, emigration, death, or the end of follow-up (December 31, 2016), whichever came first. We calculated the incidence rate (IR) of dementia per 1000 person-years (PYs) as the number of events divided by the total person-years at risk. Stratified Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CI) for incident dementia. To eliminate the effect of other liver diseases on the association between NAFLD and dementia, we censored persons at the date if any other liver disease was diagnosed during follow-up. We also examined the association between NAFLD and dementia subtypes (Alzheimer’s and vascular dementia). We reported the HRs from three models: model 1, crude estimates; model 2 was adjusted for metabolic disorders on index date including diabetes, hypertension, dyslipidemia, and obesity; and model 3 was additionally adjusted for stroke, heart disease, and depression. These models were performed separately for males and females, and for the three age groups. The proportional hazard assumptions were tested based on the Schoenfeld residuals. Cumulative incidences of dementia and vascular dementia were computed by cumulative incidence functions for patients with NAFLD and their matched cohort, accounting for non-dementia death as a competing risk. 24

Because stroke and HD are common comorbidities of NAFLD and may modulate the risk of NAFLD on dementia, the interactions between NAFLD and stroke and HD were tested separately. First, we incorporated a cross-product between NAFLD and stroke in the Cox models to determine whether an interaction was present. We also tested the interaction between NAFLD
and HD. Second, to assess the magnitude of the risk, we created an indicator variable that
combined NAFLD, stroke, and HD, dividing the study population into eight groups: 1) matched
cohort who were free of stroke, HD and NAFLD (“No disease”); 2) patients with NAFLD who
were stroke- and HD-free (“NAFLD only”); 3) matched cohort who had HD but were stroke-free
(“HD only”); 4) matched cohort who had stroke but were HD-free (“Stroke only”); 5) patients
with NAFLD and stroke but HD-free (“NAFLD+Stroke”); 6) patients with NAFLD and HD but
stroke-free (“NAFLD+HD”); 7) matched cohort with stroke and HD (“Stroke+HD”); and 8)
patients with NAFLD, HD, and stroke (“NAFLD+HD+Stroke”). This indicator variable was
entered into the Cox regression models adjusted for diabetes, dyslipidemia, obesity, hypertension,
and depression.

Two-sided p-values <0.05 were considered statistically significant, except in the case of
interactions analysis, where p-values <0.10 indicate the presence of a significant multiplicative
interaction. All statistical analyses were performed using Stata MP 17.0 (StataCorp, College
Station, TX).

Standard Protocol Approvals, Registrations, and Patient Consents

The study was approved by the Regional Ethics Review Board in Stockholm (dnr 2017/1019-
31/1). Since this study included analyses of deidentified data, written consent from participants
was not required.

Data availability

Data are subject to personal information protection regulations and are not publicly available.
Sharing of anonymized data will be considered on a case-by-case basis on request.
Results

Characteristics of the study population

We identified 2898 patients with NAFLD and 28357 reference individuals aged 65 or older. The median age for patients with NAFLD and the matched cohort was 70 years (Interquartile range [IQR]: 8), with 73% of individuals aged between 65 and 75 years (Table 1). More than half of the study population were female (55.1%). Of all patients with NAFLD, 105 (3.6%) had cirrhosis at baseline. In general, patients with NAFLD were more likely to have metabolic disorders, cardiovascular comorbidities, and depression than the matched cohort (p<0.001 for all).

NAFLD and dementia risk

During a median follow-up of 5.5 years (IQR: 8 years) (4.6 years [IQR: 8.0 years]) for patients with NAFLD, and 5.6 years [IQR: 8.5 years] for the matched cohort), 145 (5.0%, 11.5/1000 PYs) of patients with NAFLD, and 1291 (4.6%, 7.9/1000 PYs) of the matched cohort developed dementia. This translated to a HR of 1.86 (95% CI 1.55–2.25) for dementia associated with NAFLD relative to the matched cohort (Table 2). The association between NAFLD and dementia was attenuated after adjusting for metabolic disorders (aHR 1.64, 95% CI 1.29–2.07) and further reduced but still statistically significant after additionally adjusting for depression, stroke, and HD (aHR 1.30, 95% CI 1.10–1.72). The risk of dementia was similar across sex (p for interaction with sex=0.44). The risk of dementia was attenuated for patients diagnosed with NAFLD after age 85 (aHR 1.08, 95% CI 0.55–2.22), although this subgroup was small (n=108, 3.7% of the full population, with 12 cases of dementia).

Regarding dementia subtypes, Cox regression models suggest that NAFLD is related to a somewhat higher rate of vascular dementia (aHR 1.44, 95% CI 0.96–2.23, p=0.07) but not with the rate of AD (aHR 1.15, 95% CI 0.78–1.70) (Table 3).
Cumulative incidences for dementia and vascular dementia for patients with NAFLD and the matched cohort are shown in Figure 2. In general, the probability of dementia was higher for patients with NAFLD than the matched cohort. For example, the five-year cumulative incidence of all-cause dementia was 3.6% for patients with NAFLD and 2.0% for the matched cohort. Ten years from the index date, 7.5% patients with NAFLD and 5.5% of the matched cohort developed all-cause dementia. Cumulative incidences across age groups showed that the patients with NAFLD diagnosed at age < 85 years had a higher probability of dementia than those diagnosed at age ≥ 85 years (eFigure 1 in the Supplement), although the latter subgroup was small (n=108 patients with NAFLD). Regarding vascular dementia, the ten-year cumulative incidence was 1.9% for patients with NAFLD and 1.1% for the matched cohort.

The role of comorbid heart disease and stroke on the NAFLD-dementia association

Statistically significant interactions were observed between stroke and NAFLD ($p=0.03$) but not between HD and NAFLD ($p=0.57$). Stratified analysis revealed that among patients without stroke, NAFLD was associated with a higher risk of dementia than the matched cohort. Such association was observed in patients without HD, but not in relation to those with stroke or with HD (eTable 2 in the Supplement). Table 3 shows the joint effect of HD and stroke on the association between NAFLD and dementia. Relative to the matched cohort with neither NAFLD, HD nor stroke (no disease), those with NAFLD, stroke, or HD alone had higher rates of incident dementia in the fully adjusted model (NAFLD only: aHR 1.42, 95% CI 1.10–1.82; HD only: aHR 1.90, 95% CI 1.43–2.53; stroke only: aHR 2.12, 95% CI 1.64–2.74). The presence of two diseases was associated with a two-fold increased rate of dementia (aHR 2.00, 95% CI 1.52–2.62). The specific constellation of comorbid NAFLD and stroke had the highest rate of dementia (aHR 3.04, 95% CI 1.61–5.74).
Sensitivity analysis

Because dementia has a long prodromal phase, we analyzed the association among study participants with at least five years of follow-up time to address the concern of reverse causality. By doing so, we could also minimize any surveillance bias that might occur if patients with NAFLD were more likely to have dementia detected due to frequent contact with healthcare. The results of this analysis were similar in magnitude to our main findings (eTable 3 in the Supplement). We also excluded patients with cirrhosis at baseline to rule out the potential impact of hepatic encephalopathy misclassified as dementia. These results were also similar to our original findings with no meaningful differences (eTable 3 in the Supplement).

Classification of evidence

This study provides Class II evidence that NAFLD is associated with incident vascular and non-vascular dementia.

Discussion

In this large matched-cohort study of individuals aged 65 and older, we found that NAFLD was associated with an increased rate of all-cause dementia, with some evidence suggesting that the main effect was due to vascular dementia. Comorbid cardiovascular diseases (e.g., NAFLD with stroke or heart disease) seemed to exacerbate the impact of NAFLD on dementia risk.

Although mounting evidence has suggested a link between NAFLD and cognitive dysfunction, the risk of dementia in patients with NAFLD has not been widely investigated. In our study, NAFLD was associated with a 38% higher rate of dementia. We present cumulative
incidence data that can be important when communicating risk with patients and allocating healthcare resources.

The association observed in our study is consistent with a recent large Korean study, of about six million individuals aged ≥40, which indicated an association between NAFLD and developing dementia.25 However, a study using primary care data from Germany suggested that NAFLD was not associated with dementia risk among adults aged ≥65.16 The disparity in results might be explained by the difference in the age distribution of the study populations, study settings, NAFLD diagnostic tools, and different confounders adjusted in the models. Furthermore, these studies all have a relatively short follow-up less than eight years, leaving the results open to the influence of dementia’s long prodromal phase. To this end, a previous study with 20-year follow-up from our group found that the risk of dementia was not increased in biopsy-proven NAFLD.15 However, this study was underpowered to examine the effect of the comorbidities available in the present study, and those who underwent liver biopsy might receive increased surveillance and better treatment of contaminant cardiovascular risk factors. Nevertheless, a study by Weinstein et al. reported that reduced brain volume corresponding to four years of brain aging was independently related to NAFLD, suggesting that NAFLD is an emerging driver of cognitive aging.26

Notably, we observed a difference in age at diagnosis in the association between NAFLD and incident dementia, with higher rates of dementia seen in patients diagnosed with NAFLD <85 years, while no significantly increased risk was found for those diagnosed after age 85. We restricted the study population to those over 65 years because the mean age at dementia diagnosis is 85 years in Sweden,21 and those with a first NAFLD diagnosis under 65 years are less likely to develop dementia, given that the median follow-up time was 5.5 years in this study.
The impact of NAFLD on dementia may be heterogeneous based on the age at NAFLD diagnosis, but studies that explicitly consider age at NAFLD diagnosis or NAFLD duration are scarce, primarily because NAFLD is often under-diagnosed. Nonetheless, studies examining the relationship between early age at diabetes onset and subsequent increased dementia risk may shed light on the plausible explanations, given that insulin resistance is a major feature shared by both NAFLD and diabetes.27,28 Longer duration of hyperglycemia caused by insulin resistance may damage insulin signaling in the brain, leading to glucose neurotoxicity and accumulation of advanced glycated end products.29 The negative impact of chronic insulin resistance often seen in NAFLD may accumulate over time in patients who had NAFLD diagnosis at mid-life, predisposing them to have a higher risk of dementia in late life. With a longer follow-up period, the magnitude of the associations reported here could presumably have been greater. We observed no increased dementia risk in patients with NAFLD diagnosed at age ≥85, partly due to the small difference in metabolic disorders between those with NAFLD and matched controls.30 Furthermore, the possibility of survival bias in this age group might play a role, as older adults with severe NAFLD complications may have died early, leaving relatively healthy individuals in the risk set. Caution is needed when interpreting this result as the statistical power was limited due to small number of patients aged 85 and over.

Our results showed that NAFLD is associated with an increased risk of dementia, after adjusting for cardiovascular comorbidities. Additionally, the presence of cardiovascular diseases further strengthened the risk of dementia. We also showed that NAFLD is associated primarily with vascular dementia, but not Alzheimer’s disease. These results are in accordance with the major hypothesis that the association between NAFLD and dementia is mainly driven by vascular damage in the brain. A direct link between NAFLD and subclinical vascular injuries,
including atherosclerosis, arterial stiffness, and cerebral small vessel disease was reported, and the clinical manifestation of vascular diseases, including stroke and heart diseases, is closely associated with vascular dementia. Beyond their already well-established individual association with incident dementia, we addressed their combined impact on dementia in old age by showing that dementia risk was found to increase >2-fold for patients with NAFLD comorbid with cardiovascular disease. Among all constellations, comorbid NAFLD and stroke and comorbid stroke and heart disease appear to be particularly damaging cognition. This finding might be partly attributed to increased surveillance in neurology clinics, i.e., stroke victims may receive dementia diagnosis earlier from physicians more alert to changes in cognition or functioning. Therefore, caution is needed when interpreting the magnitude of the results.

Alongside the vascular damage, other mechanisms have been suggested linking NAFLD to dementia. Hepatic dysfunction and insulin resistance may lead to insufficient amyloid clearance in the brain, and toxic metabolites produced in the injured liver may cross the brain-blood barrier leading to neuroinflammation that precedes pathology in the brain. Besides, it is recognized that liver fibrosis, rather than hepatic steatosis, is a strong prognostic factor for long-term complications such as cardiovascular diseases and mortality. In this regard, a previous study from our group demonstrated that histological markers of fibrosis improved dementia risk prediction beyond that of conventional cardiometabolic risk factors. The advanced form of liver disease, such as fibrosis, may be required for cognition to be affected. To elucidate these mechanisms in greater detail, future studies of people with advanced fibrosis should integrate findings on cognitive functioning with neuropathological and biomarker data.

Strengths of this study include a large population including all NAFLD patients aged ≥65 and a matched cohort without NAFLD diagnosis identified from the NDR. Selection bias is
minimal because physicians are required to report all medical data to the registers used, which are maintained by public institutions. The registers also allow for a long follow-up period, free from dropout apart from emigration. The limitations of the study also result from using the registers. As NAFLD is often asymptomatic, it is often underdiagnosed despite a high prevalence in the general population. This misclassification of NAFLD may lead to an underestimation of the association between NAFLD and dementia. Furthermore, the NPR does not cover data from primary care, and hence our results can only be generalized to patients in secondary or tertiary settings. That said, patients included in our study were diagnosed in specialty care and might represent more severe cases of NAFLD. Furthermore, dementia diagnosis might be misclassified as hepatic encephalopathy in patients with cirrhosis. However, our sensitive analysis, excluding all patients with cirrhosis, gave estimates similar to those of original analysis. The sensitivity of AD and VaD ascertainment from NPR is moderate, which might lead to falsely low estimates of the associations. Additionally, we lack information on other possible confounders such as education, socioeconomic status, and cannot rule out the influence of residual confounding (i.e., duration of CVD).

Conclusion

In this large cohort study of older adults, NAFLD was associated with a higher rate of all-cause dementia. The finding was stronger among patients with both NAFLD and comorbid cardiovascular disease. These results highlight the possibility that targeted treatment of NAFLD and cardiovascular comorbidities may reduce the risk of dementia.
References

Table 1. Baseline characteristics of study population. Results are presented as n (%) and median (IQR).

<table>
<thead>
<tr>
<th></th>
<th>Patients with NAFLD (N=2898)</th>
<th>Matched cohort (N=28357)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at index date (median, IQR)</td>
<td>70 (8)</td>
<td>70 (8)</td>
<td>0.380</td>
</tr>
<tr>
<td>Age groups at index date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65–74</td>
<td>2093 (72.2)</td>
<td>20782 (73.3)</td>
<td>0.437</td>
</tr>
<tr>
<td>75–84</td>
<td>697 (24.1)</td>
<td>6593 (23.3)</td>
<td></td>
</tr>
<tr>
<td>≥85</td>
<td>108 (3.7)</td>
<td>982 (3.5)</td>
<td></td>
</tr>
<tr>
<td>Follow-up years (median, IQR)</td>
<td>4.6 (8.0)</td>
<td>5.6 (8.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>1596 (55.1)</td>
<td>15630 (55.1)</td>
<td>0.957</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>105 (3.6)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>849 (29.3)</td>
<td>451 (1.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>474 (16.4)</td>
<td>444 (1.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1426 (49.1)</td>
<td>1271 (4.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Obesity</td>
<td>274 (9.5)</td>
<td>60 (0.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart disease</td>
<td>1036 (35.6)</td>
<td>1112 (3.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke<sup>b</sup></td>
<td>220 (7.6)</td>
<td>1632 (5.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Depression</td>
<td>238 (8.2)</td>
<td>161 (0.6)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

^a Heart disease refers to diagnosis of least one of the following: coronary heart disease, atrial fibrillation, heart failure

^b Stroke includes ischemic stroke or hemorrhagic stroke

Abbreviations: NAFLD: non-alcoholic fatty liver disease; IQR: interquartile range
Table 2. Number of events/person-year, cumulative incidence (%), and hazard ratios (HR) with 95% CI from a stratified Cox regression for dementia associated with NAFLD in the total population, by sex and age groups.

<table>
<thead>
<tr>
<th>Study population</th>
<th>No. of events/person-year (%)</th>
<th>Model 1*</th>
<th>Model 2**</th>
<th>Model 3***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matched cohort</td>
<td>NAFLD</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>Total population</td>
<td>1291/164167 (4.6)</td>
<td>145/12554 (5.0)</td>
<td>1.86 (1.55, 2.25)</td>
<td>1.64 (1.29, 2.07)</td>
</tr>
<tr>
<td>Male</td>
<td>512/69705 (4.0)</td>
<td>59/5069 (4.5)</td>
<td>1.96 (1.46, 2.63)</td>
<td>1.24 (0.87, 1.75)</td>
</tr>
<tr>
<td>Female</td>
<td>779/94461 (5.0)</td>
<td>86/7485 (5.4)</td>
<td>1.80 (1.42, 2.29)</td>
<td>1.43 (1.08, 1.89)</td>
</tr>
<tr>
<td>Age group (65–74)</td>
<td>569/125257 (2.7)</td>
<td>75/9699 (3.6)</td>
<td>2.01 (1.61, 2.61)</td>
<td>1.82 (1.20, 2.53)</td>
</tr>
<tr>
<td>Age group (75–84)</td>
<td>564/35400 (8.6)</td>
<td>58/2606 (8.3)</td>
<td>1.65 (1.23, 2.22)</td>
<td>1.40* (0.99, 1.97)</td>
</tr>
<tr>
<td>Age group (≥85)</td>
<td>158/3509 (16.1)</td>
<td>12/258 (11.1)</td>
<td>1.27 (0.68, 2.37)</td>
<td>1.00 (0.50, 2.00)</td>
</tr>
</tbody>
</table>

The reference group is the matched cohort under each category.
*Model 1: Crude model
**Model 2: Adjusted for diabetes, obesity, dyslipidemia, and hypertension.
***Model 3: Adjusted for diabetes, obesity, dyslipidemia, hypertension, stroke, heart disease, and depression.
*p=0.06 Abbreviations: HR: hazard ratio; NAFLD: non-alcoholic fatty liver disease; CI: confidence interval
<table>
<thead>
<tr>
<th>Study population</th>
<th>Alzheimer’s disease</th>
<th></th>
<th></th>
<th>Vascular dementia</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of events/ person-year (%)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>No. of events/ person-year (%)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td></td>
<td>Model 1*</td>
<td>Model 2**</td>
<td>Model 3***</td>
<td>Model 1*</td>
<td>Model 2**</td>
<td>Model 3***</td>
</tr>
<tr>
<td>Total population</td>
<td>307/218254 (1.1)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>272/218179 (1.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Matched cohort</td>
<td>36/20091 (1.2)</td>
<td>1.28 (0.91, 1.81)</td>
<td>1.28 (0.87, 1.90)</td>
<td>1.15 (0.78, 1.70)</td>
<td>47/19991 (1.7)</td>
<td>1.97 (1.43, 2.69)</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>111/97728 (0.9)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>123/97523 (1.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Matched cohort</td>
<td>11/88840 (0.8)</td>
<td>1.07 (0.57, 2.00)</td>
<td>0.82 (0.39, 1.74)</td>
<td>1.20 (0.46, 3.18)</td>
<td>22/88123 (1.7)</td>
<td>2.09 (1.31, 3.31)</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>196/120527 (1.3)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>149/120656 (1.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Matched cohort</td>
<td>25/11207 (1.6)</td>
<td>1.40 (0.92, 2.14)</td>
<td>1.56* (0.98, 2.50)</td>
<td>1.46 (0.88, 2.43)</td>
<td>25/11178 (1.6)</td>
<td>1.87 (1.22, 2.87)</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group (65–74 years)</td>
<td>143/152463 (0.6)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>122/152403 (0.6)</td>
<td>1.00</td>
</tr>
<tr>
<td>Matched cohort</td>
<td>20/13707 (0.9)</td>
<td>1.60 (1.00, 2.58)</td>
<td>1.15 (0.66, 2.00)</td>
<td>1.15 (0.76, 1.73)</td>
<td>24/13669 (1.2)</td>
<td>2.41 (1.54, 3.77)</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group (75–84 years)</td>
<td>138/57709 (2.1)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>117/57767 (1.8)</td>
<td>1.00</td>
</tr>
<tr>
<td>Matched cohort</td>
<td>16/5565 (2.3)</td>
<td>1.24 (0.74, 2.10)</td>
<td>1.66 (0.93, 2.98)</td>
<td>1.15 (0.76, 1.73)</td>
<td>21/5527 (3.1)</td>
<td>1.94 (1.20, 3.14)</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group (≥85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
<table>
<thead>
<tr>
<th>Matched cohort</th>
<th>20/8083 (2.7)</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>33/8083 (3.4)</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAFLD</td>
<td>0/819</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td><5/797 (<3)</td>
<td>0.56</td>
<td>0.30</td>
<td>1.13</td>
</tr>
</tbody>
</table>

*p=0.06 †P=0.07 §p=0.08

*Model 1: Crude model
**Model 2: Adjusted for diabetes, obesity, dyslipidemia, and hypertension.
***Model 3: Adjusted for diabetes, obesity, dyslipidemia, hypertension, stroke, heart disease, and depression.

Abbreviations: HR: hazard ratio; NAFLD: non-alcoholic fatty liver disease; CI: confidence interval; N.A: not applicable
Table 4. Number of events/person-year, cumulative incidence (%), and hazard ratios (HRs) with 95% CI of incident all-cause dementia by disease status.

<table>
<thead>
<tr>
<th>Study population</th>
<th>Model 1*</th>
<th>Model 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of events/ person-year (%)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>No Disease</td>
<td>1100/153953 (4.2)</td>
<td>1.00</td>
</tr>
<tr>
<td>One Disease</td>
<td>207/15714 (15.8)</td>
<td>2.01 (1.73–2.34)</td>
</tr>
<tr>
<td>NAFLD only</td>
<td>79/8157 (4.5)</td>
<td>1.73 (1.37-2.18)</td>
</tr>
<tr>
<td>HD only</td>
<td>53/2991 (12.5)</td>
<td>2.08 (1.57-2.74)</td>
</tr>
<tr>
<td>Stroke only</td>
<td>75/4567 (7.9)</td>
<td>2.37 (1.87-3.06)</td>
</tr>
<tr>
<td>≥Two Diseases</td>
<td>129/7054 (10.5)</td>
<td>2.48 (2.06–2.99)</td>
</tr>
<tr>
<td>Two Diseases</td>
<td>123/6743 (10.6)</td>
<td>2.47 (2.04–2.99)</td>
</tr>
<tr>
<td>NAFLD+Stroke</td>
<td>10/449 (8.6)</td>
<td>3.49 (1.87-6.52)</td>
</tr>
<tr>
<td>NAFLD+HD</td>
<td>50/3637 (5.4)</td>
<td>1.94 (1.46-2.58)</td>
</tr>
<tr>
<td>HD+Stroke</td>
<td>63/2657 (9.2)</td>
<td>2.98 (2.31-3.86)</td>
</tr>
<tr>
<td>Three Diseases</td>
<td>6/311 (5.8)</td>
<td>2.78 (1.24-6.22)</td>
</tr>
</tbody>
</table>

*Model 1: Crude model
**Model 2: Adjusted for diabetes, obesity, dyslipidemia, hypertension, and depression.
The reference group was “No disease” including matched cohort without stroke and without heart disease. Abbreviations: HD: Heart disease; NAFLD: non-alcoholic fatty liver disease; HR: hazard ratio; CI: confidence interval
Figure legend

Figure 1. Flowchart of the study population
Abbreviations: NAFLD: non-alcoholic fatty liver disease; AAT-deficiency: Alpha-1 antitrypsin deficiency

Patients diagnosed with NAFLD from the NPR between January 1, 1987 and December 31, 2016 (N = 13,541)

Patients aged ≥65 years (n = 3,511)

Excluded (n = 613):
• Uremia at baseline (47)
• Other liver diseases at baseline:
 • AAT deficiency (4)
 • Alcoholic liver disease (192)
 • Autoimmune disease (15)
 • Liver failure (54)
 • Budd–Chiari syndrome (0)
 • Hemochromatosis (70)
 • Primary biliary cholangitis (22)
 • Primary sclerosing cholangitis or any cholangitis (32)
 • Wilson disease (0)
 • Viral hepatitis (44)
 • No matched individuals (103)

(n = 2,898)

Controls from general population on age, sex, and municipality with no recorded diagnosis of NAFLD between January 1, 1987 and December 31, 2016 (N = 135,794)

Matched controls aged ≥65 years (n = 32,822)

Excluded (n = 4,465):
• Uremia at baseline (143)
• Other liver diseases at baseline:
 • AAT deficiency (0)
 • Alcoholic liver disease (5)
 • Autoimmune disease (1)
 • Liver failure (8)
 • Budd–Chiari syndrome (1)
 • Hemochromatosis (6)
 • Primary biliary cholangitis (2)
 • Primary sclerosing cholangitis or any cholangitis (9)
 • Wilson disease (0)
 • Viral hepatitis (3)
 • No matched individuals (4,308)
Figure 2. Cumulative incidence of all-cause dementia and vascular dementia by NAFLD and matched cohort
Abbreviations: NAFLD: non-alcoholic fatty liver disease
Nonalcoholic Fatty Liver Disease and Risk of Dementia: A Population-Based Cohort Study
Ying Shang, Linnea Widman and Hannes Hagström
Neurology published online July 13, 2022
DOI 10.1212/WNL.0000000000200853

This information is current as of July 13, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/07/13/WNL.0000000000200853.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
Cohort studies
http://n.neurology.org/cgi/collection/cohort_studies
Gastrointestinal
http://n.neurology.org/cgi/collection/gastrointestinal
Vascular dementia
http://n.neurology.org/cgi/collection/vascular_dementia

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.