
Author(s):
Spriha Pavuluri, MD¹; Valentina Gumenyuk, Ph.D¹; Sookyong Koh, MD¹; Afshin Salehi, MD²; Sahara Cathcart, MD¹; Olga Taraschenko, MD, Ph.D¹

Corresponding Author:
Olga Taraschenko, olha.taraschenko@unmc.edu

Affiliation Information for All Authors: 1. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE; 2. Department of Neurological Surgery, University of Nebraska Medical Center, Omaha Children’s & Medical Center, NE.

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Contributions:
Spriha Pavuluri: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Valentina Gumenyuk: Major role in the acquisition of data; Analysis or interpretation of data
Sookyong Koh: Drafting/revision of the manuscript for content, including medical writing for content
Afshin Salehi: Drafting/revision of the manuscript for content, including medical writing for content
Sahara Cathcart: Drafting/revision of the manuscript for content, including medical writing for content
Olga Taraschenko: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
2

Table Count:
0

Search Terms:
[284] EEG; see Epilepsy/Seizures (S); [66] Epilepsy surgery; [72] Functional neuroimaging; [297] Status epilepticus; [132] Autoimmune diseases

Acknowledgment:
We would like to acknowledge Dr. Oliver Young for his expertise in caring for our patient.

Study Funding:
No targeted funding reported.
Abstract

Rasmussen’s encephalitis (RE) is a devastating progressive inflammatory disorder that leads to debilitating neurological deficits and intractable epilepsy. Surgical treatment of the dominant hemisphere has been attempted with hesitation given the lack of effective diagnostic tools to determine the potential functional deficits from disconnection procedures.

We present the case of a 15-year-old male with RE, right hemiparesis, profound aphasia, and recurrent status epilepticus, who underwent language assessment using magnetoencephalography (MEG) prior to urgent hemispherectomy for epilepsia partialis continua. Cortical responses in the passive auditory task were localized to the left and right hemispheres at latencies of 200 and 380 ms, respectively from the stimulation onset. The current density reconstruction analysis showed the sources at 380 and 200 ms in the right and left temporal-parietal junctions, respectively. These findings confirmed that the patient’s language was represented bilaterally.
Other tests conventionally used to assess cortical language function were not attempted given his poor functional status and ongoing seizures. The left functional hemispherectomy has resulted in seizure freedom and significantly improved language function.

The MEG-based evaluation of the language function could provide valuable information regarding cortical language organization prior to hemispherectomy in patients with RE. Such approach of mapping the eloquent cortical functions can be used in other structural and autoinflammatory disorders of the brain, especially in patients who cannot participate in the conventional diagnostic modalities designed to assess critical brain functions like language and memory.

Introduction

The clinical features and pathophysiology of Rasmussen’s encephalitis (RE), a progressive autoinflammatory disease of the cerebral hemisphere, were initially described in 1958. Drug-resistant epilepsy and progressive hemiplegia have become hallmarks of this syndrome while functional hemispherectomy has been the only definitive treatment approach to alleviate seizures and prevent the progressive functional deterioration in RE. Given that the majority of patients with RE are children and adolescents, the concern for disruption of the critical cortical functions in the developing brain during a disconnection procedure has limited the availability of hemispherectomy, especially in patients with RE in the dominant hemisphere. The available noninvasive approaches to map the eloquent cortical functions prior to disconnection procedures, including functional magnetic imaging resonance (fMRI) and Wada
test, may only be tolerated by a few pediatric patients with advanced RE. Moreover, invasive procedures like Wada carry an increased risk of strokes, encephalopathy, allergic reactions and carotid artery dissections. Therefore, newer noninvasive tools for the assessment of these patients are urgently needed.

Magnetoencephalography (MEG), has emerged as a valuable tool to assist in localization of seizure focus prior to hemispherectomy for drug-resistant epilepsy; however, this technique has not been previously reported for the use in functional mapping of RE patients. We provide the description of the clinical course and evaluation of a 14-year-old boy with an advanced RE who underwent MEG to assess his language function prior to urgent hemispherectomy for refractory focal motor status epilepticus. Despite the ongoing seizures during the MEG, the novel passive listening paradigm was successfully applied during the study and allowed an accurate assessment of this receptive language function. A successful disconnection procedure has led to post-operative seizure freedom and improve language function.

Case report

Fourteen-year old right-handed male who presented to the ambulatory clinic at our epilepsy center in 2013 was the product of a full-term pregnancy which was complicated by prolonged labor, fetal distress and hypoxia at birth leading to the moderate developmental delays. He was initially evaluated at age 9 years after he developed seizures which consisted of prolonged tonic-clonic events and frequent focal motor seizures characterized by right facial twitching and clonic movements of the ipsilateral upper and lower extremities. At his initial evaluation he had a normal neurological examination with intact cognitive and language function; his brain MRI was unrevealing. Despite being treated with three anti-seizures drugs
(ASDs), within 6 months he developed refractory focal epilepsy and recurrent status epilepticus requiring frequent hospitalizations to the intensive care unit. In addition to ASDs, patient received treatment with vagal nerve stimulator as well as corticosteroids and intravenous immunoglobulin for presumed autoimmune encephalitis; however, the immunotherapies allowed only temporary improvement of seizures.

Within 12-18 months from seizure onset, patient developed expressive and receptive aphasia, followed by right hemiparesis. His brain MRI revealed new signal hyperintensity in the left frontal inferior lentiform nucleus on a T2 sequences suggestive of possible inflammation. The open brain biopsy revealed patchy perivascular and parenchymal lymphocytic inflammation with microglial nodule formation, neuronophagia, astrocytic gliosis and subpial gliosis suggestive of RE. Given the presence of independent epileptiform discharges and seizures in both hemispheres, corpus callosotomy was initially offered as palliative treatment but it was declined by his parents due to the concern for cognitive deterioration. Twenty-four months after the diagnosis of RE, patient developed epilepsy partialis continua characterized by nearly continuous twitching of the right facial muscles as well as right upper and lower extremities. Seizures have impaired his ability to receive nutrition and lead to rapid deterioration of his cognitive and motor functions. His assessment at that time revealed moderate expressive and receptive aphasia, and right hemiparesis. His MRI revealed moderate cortical atrophy in the left hemisphere. Following a repeated discussion at the multidisciplinary epilepsy case conference, urgent functional hemispherectomy was recommended. His language function was assessed using the MEG-based passive auditory language paradigm. During the passive listening task MEG cortical responses were recorded using the 306-MEG channel whole-head system (Neuromag, Helsinki, Finland), and the EEG data was recorded using a 60 channel prefabricated
cap (Easy Cap, Germany). The patient was presented with 100 single-word audio clips from popular cartoons, and the words were delivered every 2 seconds spoken forwards (words) and backwards (non-words). We created this paradigm using both forwards and backwards verbal stimuli to be able to specifically compute the differential average between these two stimuli addressing the semantic information, and subtracting similar, but non-semantic, auditory parameters. This difference wave form was then submitted for source localization analysis the standardized low resolution brain electromagnetic tomography (sLORETA)- accurate minimum-norm (SWARM) method implemented in CURRY software (Compumedics Neuroscan, Charlotte, NC, USA).

The source localization analysis revealed the receptive language function in the left posterior middle temporal gyrus at 200 ms and in right angular gyrus at 380 ms, further confirming the bilateral representation of language (Fig. 1A). The reliability of these findings was unaffected by ongoing seizure activity during the test (Fig. 1B). Given that patient was unable to tolerate fMRI or Wada test, the MEG findings were the only quantitative data available to prognosticate the potential language impairment after the proposed left hemispherectomy.

Patient underwent an uncomplicated functional hemispherectomy of the left hemisphere which led to immediate seizure resolution. The histopathological examination of the sections from the left frontal operculum and temporal lobe revealed diffuse microglial activation with scattered microglial nodules (Fig. 2A), neuronophagia and marked reactive subpial astrogliosis with regions of neuronal dropout and mild laminar disorganization, consistent with the diagnosis of longstanding RE. There was also patchy leptomeningeal, perivascular, and parenchymal chronic inflammation, consisting of predominantly T-cells with increased CD8-positive T-cells (Fig. 2B). At his follow-up in epilepsy clinic at 1 month after surgery, his examination revealed
an improvement in facial weakness, an anti-gravity strength in right upper and lower extremities, a moderate improvement in expressive aphasia and significant improvement in receptive aphasia.

Discussion

We described a patient with RE in refractory status epilepticus, who had interictal activity in bilateral hemispheres, who underwent urgent hemispherectomy following the assessment of language function using the MEG. Previous studies have shown that dominant hemispherectomy is associated with significant worsening of the motor, memory and language functions and the tool to predict these deficits are limited. While numerous studies have explored the role of MEG in language mapping, there is paucity in literature focusing specifically on its role in the pediatric surgical epilepsy population. With our case report we were able to establish the need for such non-invasive assessment of language in presurgical evaluation of a pediatric patient, and interestingly, the MEG-based language mapping in our patient was accurate despite the ongoing seizure activity during the test. Seizures would preclude the completion of the task during other conventionally employed procedures for mapping such as fMRI, Wada test, or intracranial EEG.

While intracranial EEG monitoring is the most used approach for motor cortical mapping, historically hemispheric language dominance has been determined using intracarotid amobarbital procedure (IAP), or often referred to as Wada. Both of these modalities remain invasive, and intracranial EEG is restricted to the areas where the electrodes are implanted. With the advent of newer non-invasive functional modalities like fMRI and MEG, there has been renewed interest in exploring these tools to assess language, motor and memory-related networks in the brain.
Figure Legends

Figure 1. Magnetoencephalography and surface electroencephalography data

(A) Magnetoencephalographic (MEG) mapping of the language using the standardized low resolution brain electromagnetic tomography (sLORETA)-accurate minimum-norm (SWARM). The maximum of SWARM activity (green arrow) was detected at on average 200 and 380 ms from the onset of auditory stimuli in the left and right hemispheres, respectively. Color scale represents the SWARM values. (B) Surface EEG and corresponding MEG data of a typical motor seizure which occurred during language mapping. The MEG waveforms represent ictal onset in the left temporal channels.
Figure 2. Histopathological findings in Rasmussen’s Encephalitis

(A) Diffuse microglial activation and scattered microglial nodules (CD68 x200) with foci of neuronophagia. (B) Perivascular and intraparenchymal lymphocytic inflammation (CD3 x100).

References

Spriha Pavuluri, Valentina Gumenyuk, Sookyong Koh, et al.

Neurology published online August 2, 2022
DOI 10.1212/WNL.0000000000201085

This information is current as of August 2, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/08/01/WNL.0000000000201085.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases
EEG; see Epilepsy/Seizures
http://n.neurology.org/cgi/collection/eeg_see_epilepsy-seizures
Epilepsy surgery
http://n.neurology.org/cgi/collection/epilepsy_surgery_
Functional neuroimaging
http://n.neurology.org/cgi/collection/functional_neuroimaging
Status epilepticus
http://n.neurology.org/cgi/collection/status_epilepticus

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.