Teaching NeuroImage: Optic Pathway Involvement in Maple Syrup Urine Disease

Author(s):
RAMA KRISHNA NARRA, MD DNB DM(NEURORADIOLOGY)¹; RAJENDRA KUMAR PAMIDI, MD DNB(NEUROLOGY)²; ADINARAYANA RAO MANDAPALLI, MD(RADIODIAGNOSIS)³

Corresponding Author:
RAMA KRISHNA NARRA, narra.ramki29@gmail.com

Affiliation Information for All Authors: 1.DEPARTMENT OF NEURORADIOLOGY, KATURI MEDICAL COLLEGE AND HOSPITAL; 2.DEPARTMENT OF NEUROLOGY, KATURI MEDICAL COLLEGE AND HOSPITAL; 3.DEPARTMENT OF RADIODIAGNOSIS, MAA ADVANCED DIAGNOSTIC CENTER

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
A 10-day-old neonate presented with vomiting and irritability. Diffusion-weighted imaging showed abnormal signal intensities, including characteristic involvement of the optic pathway (Figure 1A, B). Maple syrup urine disease (MSUD) was suspected. Blood tests confirmed elevated levels of branched-chain amino acids (BCAAs)-leucine, isoleucine, and valine.

Optic pathway signal abnormalities occur in 26.3% of patients with MSUD and may cause cortical visual impairment and transient blindness. These abnormalities are caused by a deficiency of alpha-ketoacid dehydrogenase, elevated BCAAs, and reduced (Na+/K+ATPase) pump function resulting in water accumulation between the myelin layers (intramyelinic edema); however, they are reversible with treatment and over time.

Figure title:
Diffusion-weighted magnetic resonance imaging of a 10-day-old neonate with MSUD

Figure legend:
Figure 1. (A) Diffusion-weighted magnetic resonance images and (B) corresponding apparent diffusion coefficient (ADC) images demonstrating diffusion restriction with corresponding reduced ADC in bilateral optic tracts (curved arrows), lateral geniculate bodies (long arrows), optic radiations (short arrows), bilateral perirolandic white matter (arrowheads), brainstem (open arrows), cerebellar white matter (asterisks).

References

