Magnetic Resonance Imaging Features of Anti-Ma1/Ma2 Paraneoplastic Neurologic Syndrome

Author(s):
Amy C Kunchok, MBBS, MMed, FRACP; Daniel Ontaneda, MD, PhD; Jonathan Lee, MD; Alexander Rae-Grant, MD; Nancy Foldvary-Schaefer, DO; Jeffrey A. Cohen, MD; Stephen E Jones, MD, PhD

Corresponding Author:
Amy C Kunchok, kunchoa@ccf.org

Affiliation Information for All Authors: 1. Mellen Center for Multiple Sclerosis, Neurological institute, Cleveland Clinic; 2. Section of Neuroradiology, Imaging institute, Cleveland Clinic; 3. Cleveland Clinic Lerner College of Medicine, Cleveland Clinic; 4. Sleep Disorders Center, Neurological institute, Cleveland Clinic

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Equal Author Contribution:

Contributions:
Amy C. Kunchok: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Daniel Ontaneda: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Jonathan Lee: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Alexander Rae-Grant: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Nancy Foldvary-Schaefer: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Jeffrey A. Cohen: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Stephen E Jones: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Figure Count:
1

Table Count:
1

Search Terms:

Acknowledgment:
Anti-Ma1/Ma2 paraneoplastic neurological syndrome (PNS) is rare and often associated with testicular malignancies. Diencephalitis is a characteristic feature of anti-Ma1/Ma2 PNS. In contrast to classical limbic encephalitis, the clinical and radiological manifestations of diencephalitis may be initially subtle and under-recognized as PNS.

Here we show brain MRIs for seven patients with anti-Ma1/Ma2 PNS. All 7 had clinical features of diencephalitis including; hypersomnolence, narcolepsy-cataplexy, hyperphagia, syndrome of inappropriate antidiuretic hormone (Table). Other manifestations included rhombencephalitis (6), limbic encephalitis (4), limb weakness (2). All had brain MRI demonstrating symmetrical T2/FLAIR hyperintensity of the diencephalon (middle-ventral hypothalamus and posterior mammillary bodies) (Figure). Other MRI features included T2/FLAIR hyperintensity of the medial thalami, midbrain, pons and mesial temporal lobes. Several MRI were initially misinterpreted as Wernicke’s encephalopathy. These highlight the unique MRI features of anti-Ma1/Ma2 PNS paraneoplastic diencephalitis which may prompt further evaluation for Ma1/Ma2-IgGs and malignancy, in the appropriate setting.
<table>
<thead>
<tr>
<th>No, Age, Sex</th>
<th>Ab</th>
<th>Clinical syndrome</th>
<th>Oncological diagnosis/evaluation</th>
<th>Earliest Brain MRI (days from symptom onset)</th>
<th>Subsequent MRIs (summary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 46, F</td>
<td>ma1, ma2</td>
<td>Diencephalitis (hypersomnolence, hyperphagia, SIADH) Limbic encephalitis (agitation, confusion, seizures, emotional lability, hallucinations) Rhombencephalitis (opsoclonus). Upper and lower limb weakness</td>
<td>Renal cell carcinoma</td>
<td>Brain: T2/FLAIR hyperintensity and Gd+ of bilateral tuber cinerum and mammillary bodies (20 days). Brain: progressive T2/FLAIR hyperintensity and Gd+ of medial temporal lobes and gyrus rectus followed by atrophy. Spine: leptomeningeal Gd+ of whole spine, cauda equina and cervical nerve roots.</td>
<td></td>
</tr>
<tr>
<td>2, 21, M</td>
<td>ma1, ma2</td>
<td>Diencephalitis (hypersomnolence, narcolepsy-cataplexy, hyperphagia, SIADH) Rhombencephalitis (vertical gaze palsy, nystagmus)</td>
<td>Testicular germ cell</td>
<td>Brain: T2/FLAIR hyperintensity of bilateral tuber cinerum, mammillary bodies; Gd+ extending to the infundibular stalk (78 days). Brain: progressive T2/FLAIR hyperintensity of bilateral periaqueductal region, supraoptic hypothalamus, anterior perforated substance, and anterior commissure. Progressive atrophy of tuber cinerum and mammillary bodies.</td>
<td></td>
</tr>
<tr>
<td>3, 54, M</td>
<td>ma1, ma2</td>
<td>Diencephalitis (hypersomnolence, hyperphagia, sexual dysfunction) Rhombencephalitis (opsoclonus, pseudobulbar palsy) Cerebellitis (gait ataxia)</td>
<td>Testicular germ cell</td>
<td>Brain: T2/FLAIR hyperintensity of bilateral medial thalami, tuber cinerum and mammillary bodies (51 days). Brain: progressive T2/FLAIR hyperintensity of bilateral mesial temporal lobes.</td>
<td></td>
</tr>
<tr>
<td>4, 60, F</td>
<td>ma1, ma2</td>
<td>Diencephalitis (narcolepsy-cataplexy) Rhombencephalitis (vertical gaze palsy, nystagmus)</td>
<td>Initial cancer screen (CT C/A/P, FDG-PET body) negative</td>
<td>Brain*: T2/FLAIR hyperintensity of bilateral tuber cinerum and mammillary bodies. Patchy T2/FLAIR in midbrain and pons along decussation of superior cerebellar peduncles (12 days). Brain: progressive atrophy of tuber cinerum and mammillary bodies.</td>
<td></td>
</tr>
<tr>
<td>5, 57, M</td>
<td>ma1, ma2</td>
<td>Diencephalitis (hypersomnolence, sexual dysfunction) Limbic encephalitis (agitation, confusion, emotional lability, hallucinations)</td>
<td>Testicular germ cell</td>
<td>Brain: T2/FLAIR hyperintensity of bilateral tuber cinerum, mammillary bodies, supraoptic hypothalamus, medial thalami, ventral midbrain, and mesial temporal lobes. Bilateral patchy Gd+ of mesial temporal lobes (373 days). Brain: progressive atrophy of bilateral tuber cinerum, mammillary bodies, supraoptic hypothalamus, medial thalami, ventral midbrain, and mesial temporal lobes.</td>
<td></td>
</tr>
<tr>
<td>6, 48, M</td>
<td>ma2</td>
<td>Diencephalitis (hypersomnolence, narcolepsy-cataplexy, hyperphagia, SIADH, hyperthermia, sexual dysfunction) Limbic encephalitis (agitation, confusion, seizures, emotional lability, hallucinations)</td>
<td>Testicular microcalcifications, pathology negative for</td>
<td>Brain: T2/FLAIR hyperintensity and Gd+ of bilateral supraoptic hypothalamus, tuber cinerum, and mammillary bodies (50 days) Brain: progressive atrophy of bilateral supraoptic hypothalamus, tuber cinerum, and mammillary bodies. Spine: leptomeningeal Gd+ of distal conus and cauda equina.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Gender</td>
<td>Presenting Symptoms</td>
<td>Diagnosis</td>
<td>Work-up and Findings</td>
<td>Follow-up</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>7, 32, M</td>
<td>ma2</td>
<td>Rhombencephalitis (pseudobulbar palsy) Lower limb weakness</td>
<td>Neoplasm</td>
<td>Testicular microcalcifications, pathology negative for neoplasm</td>
<td>Brain: T2/FLAIR hyperintensity and Gd+ of bilateral tuber cinereum, mammillary bodies and temporal lobes (381 days)</td>
</tr>
</tbody>
</table>
Title: Clinical-radiological features of anti-Ma1/Ma2 paraneoplastic syndrome

Table legend:

Notes:

Patients #1-6 brain MRI were completed prior to immunotherapy.

Patient #7 had initial imaging externally and this was not available for review. He had received steroids and plasmapheresis 6 m prior to the earliest available brain MRI presented here.

Patient #4 had an initial non-contrast brain MRI.

All patients were treated with immunotherapy prior to subsequent MRI.

Abbreviations:

Gadolinium enhancement (Gd+)
Syndrome of inappropriate antidiuretic hormone (SIADH)
Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET)
Computed tomography (CT)
Chest, abdomen, pelvis (C/A/P)
Fluid-attenuated inversion recovery (FLAIR)
Male (M)
Female (F)
Antibody (Ab)
Figure: MRI brain of anti-Ma1/Ma2 patients demonstrating hypothalamic involvement

(A): FLAIR axial images demonstrating symmetrical T2/FLAIR hyperintensity of the bilateral hypothalamus (supraoptic hypothalamus, tuber cinerum, mammillary bodies) and anteromedial thalamus (red arrows).

B: Post-contrast T1-weighted coronal images demonstrating gadolinium-enhancement of the bilateral tuber cinerum and mammillary bodies in four patients (red arrows).

References


Magnetic Resonance Imaging Features of Anti-Ma1/Ma2 Paraneoplastic Neurologic Syndrome


Neurology published online September 7, 2022
DOI 10.1212/WNL.0000000000201318

This information is current as of September 7, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/09/07/WNL.0000000000201318.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Education
http://n.neurology.org/cgi/collection/all_education
Encephalitis
http://n.neurology.org/cgi/collection/encephalitis
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.