SARS-CoV-2 Vaccination and Autoimmune Neuropathies: Rebalancing the Risk

Author(s):
Jeffrey A. Allen, MD

Corresponding Author:
Jeffrey A. Allen, jaallen@umn.edu

Affiliation Information for All Authors: 1. University of Minnesota; Minneapolis, MN, USA

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Contributions:
Jeffrey A. Allen: Drafting/revision of the manuscript for content, including medical writing for content

Figure Count:
0

Table Count:
0

Search Terms:

Acknowledgment:

Study Funding:
The authors report no targeted funding

Disclosures:
JA Allen provides consultant services to Argenx, Alexion, Annexon, Axcea, CSL Behring, Takeda, Grifols, Pfizer, Johnson & Johnson

Preprint DOI:

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
With every influenza vaccination the question is asked: “Have you ever had Guillain-Barré syndrome?” If so, the potential vaccination recipient is advised to talk to their doctor before proceeding, and the physician will invariably recommend against it. The topic is widely discussed in patient and physician networks, with stakeholders holding firm convictions for or (more commonly) against vaccination. Naturally, with the emergence of the COVID-19 pandemic and the reality of administering billions of SARS-CoV-2 vaccinations across the globe the anxiety within the inflammatory neuropathy community and among clinicians caring for patients with GBS and CIDP has been raised to new heights.

But why? What fuels this anxiety? In 1976 a looming swine influenza pandemic prompted the development of a national vaccination campaign program within the United States. In its wake, an 8-fold increase in post-vaccination GBS cases was observed (about 1 GBS case per 100,000 vaccinations), and the Institute of Medicine concluded that a causal relationship between the 1976 swine influenza vaccine and GBS was likely. Coupled with the fact that the swine flu pandemic of 1976 never materialized, the foundation for vaccination hesitancy among GBS/CIDP patients and their physicians was formed. However, since 1976 associations between
seasonal vaccinations and GBS have been meager at best. Most studies have shown no increased risk3 while others showed a marginal increased risk on the order of 1-2 additional cases of GBS per 1 million persons vaccinated.4 To give these numbers more context, consider the stronger association observed between influenza infections and GBS where an estimated risk of about 17 GBS cases per 1 million patients hospitalized with influenza have been reported.5

Now enter the COVID-19 pandemic. Although much is still to be learned, there appears to be a small increased risk of GBS after COVID-19 infection6 and probably an even smaller increase risk following some (but not all) of the SARS-CoV-2 vaccinations. GBS following the adenovirus vaccinations ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2 (Johnson & Johnson) ranges between 4-7 cases per million vaccinations.7,8 No increased risk has been observed following the mRNA tozinameran (Pfizer-BioNTech) or 1 mRNA-1273 (Moderna) vaccines.8

So what is the patient with GBS/CIDP/MMN to do when faced with vaccination in the time of COVID-19? The threat of voluntarily doing something to worsen their disease can be terrifying, but so too is the prospect of developing a severe infection. Extrapolating from the influenza vaccine experience, patients are primed to be wary of vaccines. The information conveyed by support networks and sometimes physicians is often not reassuring and frequently inaccurate, as it fails to balance risks of triggering relapse from vaccination with the risks from actually becoming infected.

In this issue of Neurology, Baars and colleagues take on the timely issue of SARS-CoV-2 vaccination safety in patients with pre-existing inflammatory neuropathies.9 This prospective, multicenter cohort study included 406 patients with confirmed GBS, MMN or CIDP that received a SARS-CoV-2 vaccination. Although disability and quality of life scales were
collected, deterioration was loosely defined as any self-reported change in disease-related symptoms. Assessments were conducted 48 hours prior to vaccination and within 6 weeks to 4 months after vaccination. Symptoms experienced within 48 hours following vaccination were classified as vaccination side-effects (i.e., not related to the immune-mediated neuropathy).

Among 162 patients with GBS, none experienced a GBS reoccurrence. Although 12 of 241 patients with CIDP or MMN reported worsening disease related symptoms, the change prompted treatment modifications in only 6 patients and in all the symptoms resolved within 8 weeks. Also notably, in 10 of these 12 patients other explanations for symptom exacerbation were present during or leading into the vaccination.

These results should provide much needed reassurance to inflammatory neuropathy patients in need of SARS-CoV-2 vaccination. In the unusual event that symptoms worsened, in most instances the setback was mild and self-limiting. Digging a bit further, a notable study limitation was how deterioration was defined. Objective documentation of neuropathy worsening with measures such as grip strength testing or neurologic examination was not feasible, and instead there was a reliance on self-reported symptom changes in order to capture deterioration.

Generally speaking, placebo and nocebo responses driven by anticipation and expectation are common in CIDP during changes in treatment or in the context of other life events. This phenomena likely explains some of the self-reported deterioration in CIDP and MMN patients observed in this study, rather than worsening of the neuropathy. In only 3 patients did the change in disability scores reach the minimal clinically important difference and in 10 of 12 patients other explanations were observed that may explain the change in symptom status. Just as objectification of inflammatory neuropathy relapse was a challenge in this study, so too is it a struggle during clinical practice. While it may be attractive to attribute any change in the post
vaccination period to worsening neuropathy it is critical to objectify changes and identify confounding explanations before assigning causation.

Extremely rare events are challenging to capture in relatively small prospective studies of this kind. It is even more difficult to understand if the mRNA and adenovirus vaccinations confer different levels of risk, as seems to be the case in the general population.7,8 While this study is unable to exclude associations between SARS-CoV-2 vaccination and worsening inflammatory neuropathy, it can now be confidently state that if there is a risk it is likely to be very small and almost certainly less than the risk of an infection-triggered relapse. The time is now to rebalance the risk of vaccination in our patients with GBS, CIDP, and MMN. It’s overdue for influenza vaccination. Let’s not make the same mistake with COVID-19.

References

SARS-CoV-2 Vaccination and Autoimmune Neuropathies: Rebalancing the Risk
Jeffrey A. Allen
Neurology published online September 20, 2022
DOI 10.1212/WNL.0000000000201366

This information is current as of September 20, 2022

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/early/2022/09/20/WNL.0000000000201366.citation.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Immunology http://n.neurology.org/cgi/collection/all_immunology Chronic inflammatory demyelinating polyneuropathy http://n.neurology.org/cgi/collection/chronic_inflammatory_demyelinating_polyneuropathy Guillain-Barre syndrome http://n.neurology.org/cgi/collection/guillainbarre_syndrome Peripheral neuropathy http://n.neurology.org/cgi/collection/peripheral_neuropathy</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>