International Recommendations for the Diagnosis and Management of Patients With Adrenoleukodystrophy: A Consensus-Based Approach

Author(s):
Marc Engelen, MD PhD1; Wouter J.C. van Ballegoij, MD, PhD1; Eric James Mallack, MD2; Keith P. Van Haren, MD1; Wolfgang Köhler, MD3; Ettore Salsano, MD3; A.S.P. van Trotsenburg, MD, PhD3; Fanny Mochel, MD, PhD3,7; Caroline Sevin, MD9; Molly O Regelman, MD10; Nicholas A Tritos, MD11,12; Alyssa Halper, MD13; Robin H Lachmann, PhD, FRCP14; James Davison, PhD15; Gerald V. Raymond, MD16; Troy Lund, MD, PhD17; Paul J. Orchard, MD17; Joern-Sven Kuehl, MD18; Caroline A. Lindemans, MD, PhD19, 20; Paul Caruso, MD21; Bela Rui Turk, MD22; Ann B. Moser, BA23; Frederic M Vaz, PhD24; Sacha Ferdinandusse, PhD24; Stephan Kemp, PhD24; Ali Fatemi, MD25; Florian S. Eichler, MD25; Irene C. Huffnagel, MD, PhD1

Corresponding Author:
Marc Engelen, m.engelen@amsterdamumc.nl

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Department of Pediatric Neurology/Emma Children’s Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, University of Amsterdam, Amsterdam, The Netherlands; 2. Division of Child Neurology, Department of Pediatrics, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York City, NY, USA; 3. Department of Neurology & Pediatrics/Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA, USA 4. Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany; 5. Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy; 6. Department of Pediatric Endocrinology/Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 7. AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Reference Centers for Adult Neurometabolic diseases and Adult Leukodystrophies, F-75013, Paris, France; 8. INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; 9. Department of pediatric neurology/Hôpital Bicêtre Paris Sud, France, Reference Center for Children Leukodystrophies Inserm U1127, ICM - Hôpital Pitié Salpêtrière, Paris, France; 10. Division of Pediatric Endocrinology and Diabetes, Children’s Hospital at Montefiore, Albert Einstein School of Medicine, Bronx, NY, USA; 11. Neuroendocrine Unit, Massachusetts General Hospital, 100 Blossom Street, Cox 140, Boston, MA 02114, USA; 12. Harvard Medical School, Boston, MA, USA; 13. Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA, and Harvard Medical School, Boston, MA, USA; 14. Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK; 15. Metabolic Medicine, Great Ormond Street Hospital for Children, London UK; 16. Department of Genetic Medicine, Johns Hopkins, Baltimore, MD, USA; 17. Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA; 18. Pediatric Oncology, Hematology, Hemostaseology, University Hospital Leipzig, Leipzig, Germany; 19. Pediatric Blood and Bone Marrow Transplantation, Princess Maxima Center Utrecht, The Netherlands; 20. Department of Pediatrics, Wilhemina Children’s hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands; 21. Director of Pediatric Neuroimaging, Lenox Hill Radiology and Medical Imaging Associates, a physician entity associated with RadNet, 61 East 77th Street, NY, NY, USA; 22. Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; 23. Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA; 24. Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, The Netherlands; 25. Department of Neurology, Massachusetts General Hospital, Boston, MA, USA

Equal Author Contribution:

Contributions:
Marc Engelen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Wouter J.C. van Ballegoij: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Eric James Mallack: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Keith P. Van Haren: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Wolfgang Köhler: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Ettore Salsano: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
A.S.P. van Trotsenburg: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Fanny Mochel: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Caroline Sevin: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Molly O Regelman: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Nicholas A Tritos: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Alyssa Halper: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Robin H Lachmann: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
James Davison: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or
interpretation of data
Gerald V. Raymond: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Troy Lund: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Paul J. Orchard: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Joern-Sven Kuehl: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Caroline A. Lindemans: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Paul Caruso: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Bela Rui Turk: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Ann B. Moser: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Frederic M Vaz: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Sacha Ferdinandusse: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Stephan Kemp: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Ali Fatemi: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Florian S. Eichler: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Irene C. Huffnagel: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
4

Table Count:
0

Search Terms:

Acknowledgment:
We thank Richard Perry, Daisy Bridge, Laila Bankousli and Ben Rousseau (all from Adelphi Values) for their valuable contributions, including the literature search and moderating the expert meetings.

Study Funding:
Research grant from Blue Bird Bio, SwanBio Therapeutics, Minoryx

Disclosures:
M. Engelen: has received research support from Minoryx, Autobahn Therapeutics, BlueBirdBio and SwanBio; consultation fees from Minoryx, BlueBirdBio, Autobahn Therapeutics and Poxel. W.J.C. van Ballegoij: has received funding from Minoryx Therapeutics. E. Mallack: has received funding from the NIH for ALD-related work (K12NS066274, K23NS118044), and has received grant support from Bluebird Bio and Orchard Therapeutics for leukodystrophy education and awareness. K. van
Pathogenic variants in the \textit{ABCD1} gene cause adrenoleukodystrophy (ALD), a progressive metabolic disorder characterized by three core clinical syndromes: a slowly progressive myeloneuropathy, a rapidly progressive inflammatory leukodystrophy (cerebral ALD), and primary adrenal insufficiency. These syndromes are not present in all individuals, and are not related to genotype. Cerebral ALD and adrenal insufficiency require early detection and intervention and warrant clinical surveillance because of variable penetrance and age of onset. Newborn screening has increased the number of presymptomatic individuals under observation, but clinical surveillance protocols vary.

We used a consensus-based modified Delphi approach among 28 international ALD experts to develop best-practice recommendations for diagnosis, clinical surveillance, and treatment of ALD patients. We identified 39 discrete areas of consensus. Regular monitoring to detect the onset of adrenal failure and conversion to cerebral ALD is recommended in all male patients. Hematopoietic
cell transplant (HCT) is the treatment of choice for cerebral ALD. This guideline addresses a clinical need in the ALD community worldwide as the number of overall diagnoses as well as presymptomatic individuals is increasing due to newborn screening and greater availability of next generation sequencing. The poor ability to predict the disease course informs current monitoring intervals but remains subject to change as more data emerges. This knowledge gap should direct future research and illustrates once again that international collaboration amongst physicians, researchers and patients is essential to improving care.

Introduction

Adrenoleukodystrophy (ALD) has a variable and unpredictable clinical course.\(^1\) It is caused by pathogenic variants in *ABCD1* causing deficient \(\beta\)-oxidation of saturated very-long-chain fatty acids (VLCFAs).\(^2,3,4\) VLCFAs in plasma are a diagnostic marker.\(^5,6\) Patients are asymptomatic at birth but develop symptoms as the disease progresses. There are three core clinical syndromes: a slowly progressive myeloneuropathy (adrenomyeloneuropathy; AMN), a rapidly progressive leukodystrophy (cerebral ALD) and primary adrenal insufficiency. Women develop myeloneuropathy, men can develop all three syndromes.\(^7-9\) Currently it is not possible to predict the individual disease course.\(^1\) Only supportive treatment is available for the myeloneuropathy, but early-stage cerebral ALD can be stabilized with allogeneic hematopoietic cell transplantation (HCT), and adrenal insufficiency can be treated with hormone replacement therapy. Clinical surveillance is required to monitor the emergence of treatable aspects of the disease.\(^1\)

ALD has a birth prevalence of 1:15000 (males and females).\(^10\) The number of diagnosed patients is increasing because of newborn screening and exome sequencing in clinical practice. Management of ALD patients varies between centers because of a lack of prospective natural history studies and controlled clinical trials. Clinical practice recommendations are needed to optimize outcomes. We aimed to reach consensus among international ALD experts on best approaches to diagnosis, clinical surveillance, and treatment of ALD patients using a modified Delphi procedure.
Methods

Three centers of excellence for ALD (Amsterdam UMC, Massachusetts General Hospital and Kennedy Krieger Institute) initiated this project. Based on their ALD-related expertise, 30 professionals (pediatric) neurologists, endocrinologists, metabolic specialists, HCT experts, radiologists, and laboratory scientists) were invited. Experts were selected based on existing collaborations, recent publications and attendance of relevant scientific meetings. ME, ICH, FSE and AF formulated clinical questions on diagnosis, clinical surveillance, and treatment relevant to clinical care for patients with ALD. The questions were subsequently screened for omissions by all experts. Feedback from three patient advocacy groups (ALD Connect (USA), Alex TLC (UK) and “Volwassenen, Kinderen en Stofwisselingsziekten” (NL)) ensured that the clinical questions also addressed topics deemed relevant by patients. The advocacy groups provided comments in writing and all suggestions on underrepresented topics were adopted.

We used an evidence- and consensus-based modified Delphi approach to reach consensus amongst the experts. First, a literature review (Figure 1, Panel 1) identified 132 relevant articles, which were mostly (small) retrospective and observational studies and thus insufficient for an isolated evidence-based approach.

The Delphi approach consisted of two questionnaire rounds and one consensus meeting. In the first questionnaire round the experts rated their agreement with statements derived from the clinical questions based on a 9-point scale (1: ‘completely disagree’ and 9: ‘completely agree’). Consensus was defined as: >80% of experts rated their “agreement” between 7 and 9 or “disagreement” between 1 and 3 (Figure 2). Statements where consensus was not reached were included in the second questionnaire round and an anonymized overview of results derived from feedback of the first round was provided for each question alongside the experts own initial answer. Evidence tables from the literature review were provided. Experts were offered the opportunity to change their answer. The remaining statements were included in an online consensus meeting where consensus was sought by real-time discussion. The questionnaires, response numbers and questions that did not reach consensus are listed in eAppendix 1.

Here, we summarize the recommendations that reached consensus. Twenty-eight of the 30 invited experts participated in the first questionnaire round, 26 in the second questionnaire round and 20 in the consensus meeting. All 28 experts agreed to the final version of the recommendations. For statements concerning clinical surveillance or screening, screening was defined as clinical follow-up.
at predefined intervals to detect onset of symptoms or physical signs in patients who did not have any (self-reported) symptoms.

Role of the funding source
The health consultancy agency Adelphi Values was consulted with financial support of Bluebird Bio, SwanBio Therapeutics and Minoryx. Adelphi Values assisted the authors with the literature search and data extraction and facilitated the consensus meeting. The financial sponsors had no influence upon the content of the recommendations or this manuscript.

Standard Protocol Approvals, Registrations, and Patient Consents
This study is exempt from IRB approval since conclusions were reached with available data from the literature and expert opinion (Delphi procedure). No information on individual patients is included in this paper.

Data availability
All data on the Delphi procedure is available as Supplementary Data.
Results

Diagnosis

Presenting symptoms

Recommendations:

1. Cerebral ALD should be considered in boys and men with white matter abnormalities on brain MRI in a pattern suggestive of ALD with or without cognitive and neurological symptoms.

2. ALD related myelopathy should be considered in adult men and women with signs or symptoms of chronic myelopathy (gait disorder, spastic paraparesis, sphincter disturbances) with a normal MRI.

3. ALD related adrenal insufficiency should be considered in boys and men with primary adrenal insufficiency with no detectable steroid-21-hydroxylase antibodies or other organ specific antibodies.

4. In all at-risk patients with a relative diagnosed with ALD, ALD should be considered.

Cognitive and neurological symptoms which could indicate cerebral ALD include the new onset of attention problems, learning difficulties, onset of behavioral/mental health issues, impaired speech and vision, and progressive difficulty in walking and coordination. In boys and men with typical confluent white matter abnormalities on brain imaging - but no neurological symptoms – cerebral ALD should still be considered as lesion development may precede symptoms. Peripheral neuropathy is a common feature of ALD, but is rarely the presenting symptom. In isolated peripheral neuropathy, other causes than ALD should be sought. Females with ALD remain asymptomatic in childhood and adolescence, while in adulthood myeloneuropathy symptoms can arise. Cerebral ALD and primary adrenal insufficiency are extremely rare in women. Other causes of cerebral disease or adrenal insufficiency should be sought in female patients.

Diagnostic tests

A diagnostic algorithm is provided in Figure 3. Genetic testing (ABCD1 analysis) is the gold standard. For biochemical testing, plasma C26:0-lysophosphatidylcholine (C26:0-lysoPC) has superior diagnostic performance. If unavailable, fasting plasma VLCFAs (C26:0; C26:0/C22:0; C24:0/C22:0) should be obtained. Diagnostic algorithms are sex specific as VLCFA may be (near) normal in women. In women, the sensitivity of VLCFAs analysis is 85%, whereas C26:0-lysoPC has a sensitivity of >99%.
In symptomatic male patients with high suspicion for the diagnosis, biochemical testing should precede genetic testing. In asymptomatic males and all females, genetic testing is the first tier.

Detection of a known pathogenic $ABCD1$ variant confirms the diagnosis of ALD in both men and women. De novo pathogenic variants and variants of uncertain significance (VUS) are common. It has been advocated that in patients in whom a previously unreported missense variant is identified (a VUS), confirmation of a disease-causing pathogenic variant can only be established if a clinical phenotype develops or the genetic variant is proven pathogenic in another patient displaying symptoms. That is why only in boys, men, and symptomatic women with elevated biomarkers (C26:0-lysoPC or VLCFAs), a new variant in the $ABCD1$ gene is considered (likely) pathogenic.23

\textit{In vitro} fibroblast studies are available to study the pathogenicity of a VUS in $ABCD1$ and is especially recommended in asymptomatic boys and men and biomarker levels above the upper reference range of controls, but below the disease range (of the diagnostic laboratory). For women, fibroblast studies are less informative due to heterozygosity. In ambiguous cases extended family screening may be considered although this can raise ethical questions related to testing of asymptomatic individuals. For newborn screening, positives with VUS or known benign variants in $ABCD1$ and abnormal biochemistry, other peroxisomal biomarkers (i.e. plasmalogens, phytanic acid, pristanic acid and bile acid intermediates) should be analyzed to exclude related diseases like Zellweger Spectrum Disorder, $ACOX1$ (or $HSD1B4$) deficiency, CADDS, ACBD5 deficiency and Aicardi Goutières Syndrome.24

Treatment and management

\textbf{Multidisciplinary team of health care professionals}

Recommendations:

5. A central coordinator should be assigned as the case manager.

6. For male patients a neurologist, endocrinologist or metabolic specialist (adult or pediatric), a pediatrician, and a genetic counselor should be consulted. For female patients this should be a neurologist, metabolic specialist and genetic counselor.

The central coordinator may be a nurse or (pediatric) neurologist, endocrinologist, or metabolic specialist depending on local practice and expertise. Urologists, HCT experts, rehabilitation
physicians, physiotherapists, neuropsychologists, and mental health workers may be consulted. In very advanced cerebral ALD, nutritional support or speech therapy may be indicated.

An overview of the management of ALD patients is provided in Figure 4.

Cerebral ALD

Diagnosis with MRI and the use of gadolinium and sedation

Recommendations:

7. For the diagnosis of cerebral ALD the minimum set of MR sequences is T1 (+/- gadolinium), T2 and FLAIR. Sedation should be used if necessary.

8. Gadolinium is indicated when a new lesion or questionable lesion is identified.

9. The interval between gadolinium administration and post-contrast T1 weighted image acquisition can influence study interpretation where shorter intervals can yield a false-negative result. Although the optimal timing is not known, based on our experience we recommend an interval of at least 5 minutes.

Cerebral ALD causes severe disability and death. The gold standard for the diagnosis of cerebral ALD is MRI. Gadolinium enhancement just behind the leading edge of the lesion indicates active disease. The extent of brain involvement on MRI can be quantified with the MR severity scoring system (Loes score), ranging from 0 (no abnormalities) to 34 (severely abnormal). Recently published consensus guidelines on MRI surveillance in ALD recommend gadolinium administration for boys age 3-12 years as the risk of developing cerebral ALD is deemed highest at this point. However, new European Medicines Agency (EMA) guidelines advocate restricted gadolinium use. Therefore, our panel recommends to restrict gadolinium use to characterize newly identified or questionable lesions with two exceptions: (1) if sedation is required, to prevent the need for additional anesthesia exposure associated with a repeat scan (2) if real-time review of MR imaging is unavailable and the logistics of an additional hospital visit for gadolinium administration and repeat imaging are challenging.

Screening for cerebral ALD

Recommendations:

10. All boys and men with ALD should be screened for cerebral ALD, including in the absence of neurological or cognitive symptoms.

11. A baseline MRI scan should be obtained at 2 years of age. Between 2-12 years male patients should be screened every 6 months. From age 12 years screening should be yearly.
12. We do not recommend routine screening for cerebral ALD in girls and women.

The screening protocol is presented in Figure 4. We do not recommend routine screening for cerebral disease in females. Irrespective of screening strategies an MRI should be performed as soon as possible in all patients who develop potential signs or symptoms of cerebral ALD during follow-up.

The risk of developing cerebral disease is highest in childhood, but remains present throughout life. The age for the baseline MRI was set at 2 years because cerebral ALD before the age of 3 years is rare and MRI scans obtained before the age of 2 years are difficult to interpret due to incomplete myelination. Clinicians may choose to obtain an MRI at earlier time points based on clinical presentation and experience.

For adult men MRI surveillance should continue as long as HCT is a therapeutic option (maximum allowable age for HCT varies and was not subject to consensus here), although extended surveillance may be requested by individual patients for prognostic purposes. In patients with presumed arrested (non-progressive and non-enhancing) MRI abnormalities, imaging should initially be repeated after 3 months to confirm that lesions are non-enhancing and stable. If stable, the frequency can be expanded to 6 months and thereafter adhering to abovementioned age specific screening recommendations. Scans may be repeated more frequently in individual ambiguous cases.

Alternative methods for screening and diagnosis of cerebral disease

Recommendations:

13. Non-imaging biomarkers for the diagnosis of cerebral ALD are not indicated outside of a research setting.

14. No consensus was reached on the implementation of neuropsychological testing as a screening tool for cerebral ALD.

Differentiating active from arrested white matter lesions can be challenging. Several biomarkers (i.e. plasma neurofilament light, chitotriosidase and cytokine levels) have been studied for this purpose but require additional validation. Neuropsychological changes may precede MRI changes, and therefore neuropsychological screening could be a useful tool to screen for cerebral ALD in parallel to MRI.
Cerebral ALD treatment

Recommendations:

15. Transplantation eligibility should be determined by an ALD transplantation expert.

16. Eligibility criteria are not exclusive. In general, boys are considered eligible for transplantation when they have demyelination with gadolinium enhancement (MR severity score (Loes score) ≤ 9) and a neurological function score of 0 or 1; adult men when they have demyelinating lesions with gadolinium enhancement and no or few neurocognitive impairment.

17. Genetically transduced autologous stem cell transplantation (gene therapy) should be considered (if available) in boys if allogeneic donor options are poor.

Allogeneic hematopoietic cell transplantation (HCT) is the standard treatment for cerebral ALD and can halt progression.34-36,38,e8-e13 Outcome is poor in advanced disease (Loes score > 9 and/or Neurological Function Score > 1).e14 In men severe spinal cord disease (Expanded Disability Status Scale score > 6) and bilateral internal capsule involvement are associated with poor survival.e15

In boys autologous hematopoietic stem cell transplantation after ex vivo lentiviral gene therapy has been studied as a safer alternative. Long-term safety data is not yet available.e15-e17 Currently, this therapy is not available for routine care. Treatment for boys or men with advanced disease or progressive lesions without gadolinium enhancement, should only be considered after careful evaluation in experienced centers.

Non-cerebral related treatment effects of transplantation on myeloneuropathy and adrenal insufficiency

HCT is unlikely to affect myeloneuropathy or adrenal insufficiency, but data is limited.e18, e19 For the very new ex vivo gene corrected autologous transplantation approach there is no data.

Lifestyle management

Recommendation:

18. Male patients should be counseled on the possible association between head injury and onset of cerebral disease so that they can make an informed lifestyle choice.

Severe head trauma has been reported as possible trigger for cerebral ALD.e20-e222 Definitive proof on causality is not available.
Myeloneuropathy

Screening for and follow-up of myeloneuropathy

Recommendations:

19. History and neurological examination should be used to diagnose myeloneuropathy.

20. Asymptomatic men and women should only be screened for symptoms or physical signs of myeloneuropathy in parallel with other testing.

21. For men and women with myeloneuropathy we recommend yearly follow-up. For men, coordinating annual visit with annual brain MRI may improve convenience and compliance.

Virtually all men and most women with ALD eventually develop symptoms and signs of myeloneuropathy. Extensive counseling on specific symptoms should be considered at the time of diagnosis of ALD. This helps prevent the incorrect attribution of unrelated symptoms to the ALD diagnosis and promotes early identification of ALD-related symptoms. Follow-up can also be used to update patients on developments in the field. Men and women presenting with new symptoms should be evaluated for myeloneuropathy. The use of standardized clinimetric tests and electrophysiological testing remains restricted to research settings.

Treatment of myeloneuropathy

Recommendations:

22. Treatment is supportive and should be aimed at reducing pain (with pharmaceuticals like pregabalin or gabapentin) and spasticity (with spasmolytics like baclofen) and maintaining functional ability and quality of life.

23. In addition to routine neurological care, referral to a rehabilitation specialist, continence care specialist or pain management specialist/team may be considered.

No consensus was reached on recommendations for invasive spasticity treatments (i.e., intrathecal baclofen therapy, selective dorsal rhizotomy) or urinary incontinence.

Adrenal insufficiency

Screening for adrenal insufficiency

Recommendations:

24. All boys and men, but not girls and women, should be routinely screened for adrenal insufficiency with early morning cortisol and adrenocorticotropin hormone (ACTH) measurements.
25. Screening for adrenal insufficiency should be initiated in the first six months of life. Then, patients should be screened every 3-6 months before the age of 10 and yearly thereafter. Screening should be performed parallel to MRI where possible.

26. All patients in whom symptoms suggestive of adrenal insufficiency manifest, should undergo prompt evaluation for adrenal insufficiency to identify and prevent an adrenal crisis. If the patient is in crisis, a random cortisol and ACTH level measurement is sufficient (provided that serum specimens are drawn before glucocorticoid administration), if mildly symptomatic, early morning fasted cortisol and ACTH measurement is preferred.

27. All patients who are screened for adrenal insufficiency, or after diagnosis of adrenal insufficiency, should also be screened for mineralocorticoid deficiency with plasma renin and serum electrolytes.

28. All patients in whom symptoms suggestive of mineralocorticoid deficiency manifest, should undergo prompt evaluation with plasma renin and serum electrolytes.

Primary adrenal insufficiency is common in male ALD patients, but rare in women. Screening in adult patients should continue irrespective of age as it is inexpensive and early diagnosis offers a large potential health benefit.

Adrenal insufficiency is characterized by low or normal early morning cortisol levels with high levels of adrenocorticotropic hormone (ACTH). For diagnosis, random cortisol and ACTH can be used when early morning measurement is not an option; however, when results are ambiguous patients should be retested with early morning fasted cortisol and ACTH. Synthetic ACTH stimulation testing can be restricted to ambiguous cases or when early morning fasted cortisol and ACTH are difficult to obtain. Besides glucocorticoid deficiency, some patients also develop mineralocorticoid deficiency (hypoaldosteronism).

Treatment of adrenal insufficiency

Recommendations:

29. If adrenal insufficiency is present, we recommend glucocorticoid replacement therapy by an endocrinologist.

30. Mineralocorticoid replacement therapy should not be initiated based on symptoms alone but should also take into account plasma renin and serum electrolyte abnormalities.

31. Routine evaluation of bone health with dual energy X-ray absorptiometry (DXA) measurements in boys with adrenal insufficiency and glucocorticoid replacement therapy is not recommended.
32. No consensus was reached on the evaluation of bone health in men.

Patients with ambiguous results such as abnormal ACTH with normal or borderline cortisol values on stimulation testing should be managed per existing guidelines. Long-term glucocorticoid replacement therapy has been associated with impaired bone health.

Gonadal insufficiency

Screening for gonadal insufficiency

Recommendations:

33. Boys and men should not be screened for gonadal insufficiency.

34. If symptoms manifest, gonadal insufficiency should be evaluated with biochemical testing (early morning testosterone, LH, FSH). In boys delayed progression to puberty could indicate gonadal insufficiency (testicular volume < 4 ml and/or no signs of puberty by the age of 14 years).

Abnormal hormone levels indicating gonadal insufficiency were described in boys and men with ALD. The clinical relevance of these findings remains unclear. For instance, erectile dysfunction may reflect primary gonadal insufficiency or can be caused by spinal cord disease. Testing (gonadotrophins and testosterone measured in the early morning) is only recommended if there are symptoms.

Treatment of gonadal insufficiency

Recommendation:

35. Treatment of gonadal insufficiency is restricted to endocrinologists.

Transdermal testosterone/long-acting testosterone ester injections can be used to treat gonadal insufficiency if levels are below normal and symptoms are present.

Dietary therapy

Recommendation:

36. Data to support the efficacy of Lorenzo’s oil as a disease modifying treatment in ALD patients is insufficient.
Lorenzo’s oil (oleic acid (C18:1) and erucic acid (C22:1)) in combination with a low-fat diet reduces plasma C26:0 levels to (near) normal values in the majority of patients, but controlled clinical trials showing improved outcome are lacking.16,31,e38-e41

Additional management recommendations

37. All patients who are diagnosed with ALD should be informed about the option of family screening.

38. Patients who wish to conceive must be informed regarding the potential benefits of pre-implantation (pre-implantation genetic diagnosis; oocyte donation) and prenatal (non-invasive fetal sex determination in maternal plasma; invasive prenatal testing) diagnostic options.

39. We recommend classifying female patients with an \textit{ABCD1} pathogenic variant as “asymptomatic/presymptomatic” or “symptomatic women with ALD” and to refrain from using terms as heterozygotes or carriers.

Discussion

We provide recommendations on diagnosis, clinical surveillance, and treatment of ALD. Our consensus-based approach amongst ALD experts across the world allowed us to formulate recommendations despite limited scientific evidence. Still, on some topics consensus could not be reached (for instance the exact timing of adrenal testing in the first year of life). Furthermore, this approach is at risk for bias because of panelist selection and repeat review. We aimed to include all relevant specialists with experience in the field of ALD, but this group is small and the clinical experience of panelists varied from smaller regional to larger international cohorts with over 100 patients. Experts were instructed to withhold from voting on recommendations outside their field of expertise, but no additional correction was applied for differences in clinical experience. Moreover, consensus was defined as >80% agreement. Therefore, some panelists did not agree with specific recommendations even though consensus was reached. The screening protocol for cerebral ALD and lifestyle management are examples of topics that remain subject of discussion. Nonetheless, this guideline addresses a need in the ALD community due to the worldwide increase in diagnoses and the number of presymptomatic individuals due to newborn screening and improved diagnostic procedures. Moreover, we highlight knowledge gaps that can direct future research and illustrates that international collaboration amongst physicians, researchers and patients is essential to improve care.
Panel 1: Search strategy and selection criteria

We searched Embase, Medline and Evidence-Based Medicine Reviews for relevant publications on diagnosis, clinical surveillance, and treatment of patients with ALD. No medical librarian was involved. The search was limited to full-text availability in English and a publication date between 1990 to the year 2019. The search terms used were “adrenoleukodystrophy” or “x-linked adrenoleukodystrophy” or “X-ALD”. For the syntax of the search please refer to page 9 of the literature review report provided as supplementary data (eMethods1). In addition, we conducted a grey literature search of internet-based sources and extended the search with snowballing. The grey literature search included GeneReviews, UpToDate, ClinicalKey, The International Leukodystrophy Association (or Global Leukodystrophy Initiative, GLIA), adrenoleukodystrophy.info and the Society for the Study of inborn Errors of Metabolism (SSIEM). To provide up to date published data that was not captured in full-text publications we also included recent conference proceedings and summits, i.e., the ALD Connect annual meeting, the European Pediatric Neurology Society (EPNS) meeting, the American Society of Gene and Cell Therapy (ASGCT) annual meeting, the United Leukodystrophy Foundation conference, and the American Academy of Neurology annual meeting. All papers on ALD involving human subjects were included, non-human (animal) studies were excluded. Detailed inclusion and exclusion criteria can be found in the literature review report (eMethods). Two reviewers of Adelphi Values (A.V.) independently screened all abstracts and where applicable concomitant full-text for their eligibility. Following completion, results were reviewed and compared by a third senior reviewer (A.V.), to resolve discrepancies and reach consensus on inclusion in the literature review. The results of this consensus process and the results of the data extraction are summarized in the data extraction form that is available as Appendix 2. The study quality was assessed using the Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-analysis and results are available as eTable 1.

Panel 2: Summary of recommendations

Presenting symptoms - when to consider ALD

1. In boys and men with confluent white matter abnormalities on brain MRI in a pattern suggestive of ALD with or without cognitive and neurological symptoms;
2. In adult men and women with symptoms and signs of chronic myelopathy with a normal MRI;
3. In boys and men with primary adrenal insufficiency with no detectable steroid-21-hydroxylase antibodies or other organ specific antibodies;
4. In all at-risk patients with a relative diagnosed with ALD.
Diagnostic tests

A diagnostic algorithm is provided in Figure 3.

Screening, diagnosis, and treatment of cerebral ALD

7-12. Screen all boys and men for cerebral ALD with MRI, including in the absence of neurological or cognitive symptoms. Screening frequency is discussed in Figure 4. Gadolinium is indicated when a new lesion or questionable lesion is identified, or sedation is used.

15-17. To treat cerebral ALD, consult an ALD transplantation expert who can determine allogeneic or genetically transduced autologous stem cell transplantation eligibility.

Screening, diagnosis and treatment of myeloneuropathy

19. Use history and neurological examination to diagnose myeloneuropathy.

20. Solely screen apparently asymptomatic men for symptoms or physical signs of myeloneuropathy in parallel to any other testing.

21. Schedule yearly follow-up for men and women with myeloneuropathy.

22. Treatment is supportive. Aim treatment at reducing pain and spasticity and maintaining functional ability and quality of life.

Screening, diagnosis and treatment of adrenal insufficiency

24-28. Screen all boys and men for adrenal insufficiency with early morning cortisol, ACTH, plasma renin and serum electrolytes. If symptoms suggestive of adrenal insufficiency manifest evaluate adrenal insufficiency promptly to prevent an adrenal crisis.

29-30. Consult a (pediatric) endocrinologist for glucocorticoid replacement therapy when adrenal insufficiency is present. Do not initiate mineralocorticoid replacement therapy based on symptoms alone, but also take into account plasma renin and serum electrolyte abnormalities.

Dietary therapy

36. Data to support the efficacy of Lorenzo’s oil as a disease modifying treatment in ALD patients is insufficient.
Figure legends

Figure 1: Literature review flowchart – selection of records

- Records identified through database searching (N = 3,420):
 - Embase (2,172)
 - Medline (1,232)
 - EBM Reviews (16)

- Records identified through other sources (N = 77)

- Excluded (n = 1,138):
 - Duplicates (1,138)

- Records screened (n = 2,359)

- Excluded (n = 2,067)

- Full-text articles assessed for eligibility (n = 292)

- Excluded (n = 160)

- Records included (n = 132)

Figure 2: The scale used to define consensus

- 1: Extremely inappropriate
- 3: Inappropriate
- 5: Neither appropriate or inappropriate
- 7: Appropriate
- 9: Extremely appropriate

Consent (agree to find the statement inappropriate)

Consent (agree to find the statement appropriate)
Figure 3: Diagnostic algorithm
Ideally, biochemical and genetic testing are combined to establish diagnosis.
* Males are stratified by clinical status. The clinical status of ALD is positive if any symptom or sign relatable to ALD is present. This can include cerebral ALD with symptoms, cerebral ALD based on MRI abnormalities only, myeloneuropathy, or adrenal insufficiency. If no symptoms or signs relatable to ALD are present the clinical status is negative.
** Sensitivity of C26:0-lysoPC is >99%, whereas it is 85% for VLCFA. Analyze C26:0-lysoPC in case of normal plasma VLCFA.

Figure 4: Overview of the management of ALD patients

<table>
<thead>
<tr>
<th>Male</th>
<th>Screening or diagnostic tool</th>
<th>Screening protocol</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebral ALD</td>
<td>MRI</td>
<td>2 years old, baseline scan, 2-12 years old, every 6 months, >12 years old, yearly</td>
<td>HSCT or gene therapy</td>
</tr>
<tr>
<td>Myeloneuropathy</td>
<td>History and neurologic exam</td>
<td>>18 years old, only in parallel with any other testing</td>
<td>Supportive</td>
</tr>
<tr>
<td>Adrenal insufficiency</td>
<td>Morning fasted cortisol, ACTH, renin, electrolytes</td>
<td>0-6 months, start screening, 6 months-10 years old, every 3-6 months, >10 years old, yearly</td>
<td>Hormone replacement therapy</td>
</tr>
<tr>
<td>Gonadal insufficiency</td>
<td>Symptoms biomarkers: Testosterone, LH, FSH</td>
<td>No screening test if symptoms</td>
<td>Hormone replacement therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>Screening or diagnostic tool</th>
<th>Screening protocol</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloneuropathy</td>
<td>History and neurologic exam</td>
<td>>18 years old</td>
<td>Supportive</td>
</tr>
</tbody>
</table>
References

30. Agency EM. EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude EMA's scientific review of gadolinium deposition in brain and other tissues; 2017.

Access eReferences here: [SDC link]
International Recommendations for the Diagnosis and Management of Patients With Adrenoleukodystrophy: A Consensus-Based Approach
Marc Engelen, Wouter J.C. van Ballegoij, Eric James Mallack, et al.
Neurology published online September 29, 2022
DOI 10.1212/WNL.0000000000201374

This information is current as of September 29, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/09/29/WNL.0000000000201374.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
Leukodystrophies
http://n.neurology.org/cgi/collection/leukodystrophies
Metabolic disease (inherited)
http://n.neurology.org/cgi/collection/metabolic_disease_inherited
Peroxisomes
http://n.neurology.org/cgi/collection/peroxisomes

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise