Flexibility of Fast Brain Dynamics and Disease Severity in Amyotrophic Lateral Sclerosis

Author(s):
Arianna Polverino, PhD; Emahuel Troisi Lopez, PhD student; Roberta Minino, PhD; Marianna Liparoti, PhD; Antonella Romano, PhD student; Francesca Trojsi, Professor, MD; Fabio Lucidi, Professor; Leonardo Gollo, PhD; Viktor Jirsa, Professor; Giuseppe Sorrentino, Professor, MD; Pierpaolo Sorrentino, PhD, MD

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Corresponding Author:

Giuseppe Sorrentino, giuseppe.sorrentino@uniparthenope.it

Affiliation Information for All Authors: 1. Institute of Diagnosis and Treatment Hermitage Capodimonte, 80131 Naples, Italy; 2. Department of Motor Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy; 3. Department of Developmental and Social Psychology, University of Rome “La Sapienza”, 00185 Rome, Italy; 4. Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; 5. Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 3800 Victoria, Australia; 6. Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France; 7. Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy.

Equal Author Contribution: Arianna Polverino and Emahnuel Troisi Lopez contributed equally to this work as first authors.

Contributions:

Arianna Polverino: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Emahnuel Troisi Lopez: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Roberta Minino: Drafting/revision of the manuscript for content, including medical writing for content

Marianna Liparoti: Drafting/revision of the manuscript for content, including medical writing for content

Antonella Romano: Drafting/revision of the manuscript for content, including medical writing for content

Francesca Trojsi: Drafting/revision of the manuscript for content, including medical writing for content
Fabio Lucidi: Drafting/revision of the manuscript for content, including medical writing for content
Leonardo Gollo: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Viktor Jirsa: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Giuseppe Sorrentino: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Pierpaolo Sorrentino: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count: 6

Table Count: 1

Search Terms: [120] MRI, [178] Amyotrophic lateral sclerosis, Brain dynamics, Magnetoencephalography, Neuronal avalanches

Acknowledgment:
Study Funding: This study was funded by University of Naples Parthenope within the Project “Bando Ricerca Competitiva 2017” (D.R. 289/2017) (GS), by University of Naples “Parthenope” within the Project “Ricerca Locale, 2018” (GS), by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 945539 (SGA3) Human Brain Project (VJ, PS), and by grant agreement No. 826421 Virtual Brain Cloud (VJ, PS). L.L. Gollo was funded by NHMRC-ARC fellowship ID: APP1110975.

Disclosures:
The authors report no relevant disclosures.

Received Date: 2022-03-23

Accepted Date: 2022-07-19

Handling Editor Statement: Submitted and externally peer reviewed. The handling editor was Anthony Amato, MD, FAAN.
Abstract

Background and Objectives

Amyotrophic lateral sclerosis (ALS) is a multisystem disorder, as supported by clinical, molecular and neuroimaging evidence. As a consequence, predicting clinical features requires a description of large-scale neuronal dynamics. Normally, brain activity dynamically reconfigures over time, recruiting different brain areas. Brain pathologies induce stereotyped dynamics which, in turn, are linked to clinical impairment. Hence, based on recent evidence showing that brain functional networks become hyper-connected as ALS progresses, we hypothesized that the loss of flexible dynamics in ALS would predict the symptoms severity.

Methods

To test this hypothesis, we quantified flexibility utilizing the “functional repertoire” (i.e. the number of configurations of active brain areas) as measured from source-reconstructed magnetoencephalography (MEG) in ALS patients and healthy controls. The activity of brain areas was reconstructed in the classical frequency bands, and the functional repertoire was estimated to quantify spatio-temporal fluctuations of brain activity. Finally, we built a k-fold cross validated multilinear model to predict the individual clinical impairment from the size of the functional repertoire.

Results

Comparing 42 ALS patients and 42 healthy controls, we found a more stereotyped brain dynamics in ALS patients ($P < 0.05$), as conveyed by the smaller functional repertoire. The relationship between the size of the functional repertoire and the clinical scores in the ALS group showed significant correlations in both the delta and the theta frequency bands. Furthermore, through a k-fold cross validated multilinear regression model, we found that the functional repertoire predicted both clinical staging ($P < 0.001$ and $P < 0.01$, in delta and theta bands, respectively) and symptoms severity ($P < 0.001$, in both delta and theta bands).
Discussion

Our work shows that: 1) ALS pathology reduces the flexibility of large-scale brain dynamics; 2) sub-cortical regions play a key role in determining brain dynamics; 3) reduced brain flexibility predicts disease stage as well as symptoms severity. Our approach provides a non-invasive tool to quantify alterations in brain dynamics in ALS (and, possibly, other neurodegenerative diseases), thus opening new opportunities in disease management as well as a framework to test, in the near future, the effects of disease-modifying interventions at the whole-brain level.

Keywords: neuronal avalanches; functional repertoire; brain flexibility; brain dynamics; amyotrophic lateral sclerosis.

Abbreviations: AAL = Automated Anatomical Labeling; ALS = Amyotrophic Lateral Sclerosis; ALSbi = Amyotrophic Lateral Sclerosis behavioral impairment; ALSbci = Amyotrophic Lateral Sclerosis behavioral and cognitive impairment; ALSci = Amyotrophic Lateral Sclerosis cognitive impairment; ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; bvFTD = behavioral variant of Frontotemporal Dementia; ECAS = Edinburgh Cognitive and Behavioural ALS Screen; FDR = False Discovery Rate; ICA = Independent Component Analysis; LOOCV = leave-one-out cross validation; MEG = Magnetoencephalography; MiToS = Milano-Torino Staging; PCA = Principal Component Analysis; ROIs = Regions of Interest; VIF = variance inflation factor.

Introduction

Amyotrophic Lateral Sclerosis (ALS) is caused by a combination of pathogenic processes encompassing the whole brain. Up to 50% of ALS patients develop cognitive and/or behavioral impairment, with about 13% developing the behavioral variant of Frontotemporal Dementia (bvFTD).
Accounting for symptoms induced by widespread neurodegeneration requires a precise description of the fine-tuned, large-scale interactions among brain regions. The progression of ALS shifts the functional brain networks toward hyper-connectedness (i.e. a regime where the activity of each brain region over time is too strongly constrained by the rest of the brain). However, the interactions among regions occur in bursts, which account for most of the (time-averaged) functional connectivity and have been linked to behavioral outcomes, underlying their physiological significance. Hence, average (i.e. static) functional connectivity might not be enough to account for complex symptoms, and time-resolved analyses might be needed.

The healthy brain quickly recruits the appropriate brain regions, in the correct order, at any moment, to respond to the environment. To this end, the brain does not passively “wait” for stimuli but, rather, it constantly recruits different groups of regions, each of which might be optimal for a given stimulus and the appropriate response. The more the brain reconfigures itself (i.e., the more it is flexible), the better it can respond to tasks. These “reconfigurations” reflect themselves in large-scale bursts of activations in brain signals, called “neuronal avalanches”. In fact, while avalanches preferentially spread along the structural connectome, they constantly reconfigure, as captured by a large number of patterns over time. Hence, the number of such patterns, (i.e., the size of the functional repertoire), provides a measure of brain flexibility, and its reduction relates to clinical impairment.

Hence, we hypothesized that brain dynamics would be more stereotyped (less flexible) in ALS patients as compared to healthy controls. Furthermore, given that complex brain functions require flexibility, a restriction of the functional repertoire might underpin functional impairment.

To estimate flexibility, we used source-reconstructed magnetoencephalographic (MEG) data, which have a millisecond time resolution. MEG measures extremely weak oscillations of the
magnetic fields produced by post-synaptic neuronal activity, using an helmet equipped with ultrasensitive (fT, 10^{-15} Tesla) sensors of magnetic field (superconducting quantum interference devices, SQUIDs). Compared to EEG, MEG: (1) allows for a temporally and spatially accurate reconstruction of the neural signals, since magnetic fields are undistorted by the layers surrounding the brain (bones, meningeal sheets); (2) is reference-free, which helps providing unbiased estimates of functional connectivity.

We filtered the signal in the classical frequency bands, and defined a *neuronal avalanche* as an event that begins when at least one brain region deviates from its baseline activity, and ends when all regions restore their typical level of activity. Given a neuronal avalanche, we defined its corresponding *pattern* as the set of all the brain areas that were recruited. Finally, we defined the *functional repertoire* as the set of the unique patterns that happened over time (i.e. the part of the state-space that has been visited), and used its size as a proxy for the flexibility of the brain dynamics. We further hypothesized that the restriction of the functional repertoire would relate to a worsening of the patients’ symptoms. To test this hypothesis, we built a model to predict disease severity and clinical staging based on the size of the functional repertoire.

Methods

Study participants

ALS patients were recruited from the ALS Center of the First Division of Neurology of the University of Campania “Luigi Vanvitelli” (Naples, Italy) from September to December 2016 and from May 2018 to March 2019. Patients were right-handed and native Italian speakers diagnosed with ALS according to the revised El-Escorial criteria. All patients underwent
Edinburgh Cognitive and Behavioural ALS Screen (ECAS)16 to assess global cognitive functioning.

None of the patients showed any mutation in the screened genes \textit{SOD1}, \textit{TARDBP}, \textit{FUS/TLS}, and \textit{C9ORF72}. Healthy controls were also included.

Inclusion criteria were: (1) no use of drugs that could interfere with MEG signals; (2) no other major systemic, psychiatric or neurological diseases; and (3) no focal or diffuse brain damage at routine MRI.

\textbf{Standard Protocol Approvals, Registrations, and Patient Consents}

The study protocol was approved by the Local Ethics Committee (University of Campania “Luigi Vanvitelli”) with protocol number 591/2018, and all participants provided written informed consent in accordance with the Declaration of Helsinki.

\textbf{Brain network analysis}

\textbf{MRI acquisition}

As previously described17, MRI images of ALS patients and healthy controls were acquired on a 3T scanner equipped with an 8-channel parallel head coil (General Electric Healthcare, Milwaukee, WI). MR scans were acquired either after the MEG recording or a minimum of 21 days earlier (within one month). This was done to minimize the risk of noise due to the MRI affecting the MEG acquisition. In particular, three dimensional T1-weighted images (Gradient-echo sequence Inversion Recovery prepared Fast Spoiled Gradient Recalled-echo, time repetition = 6988 ms, TI = 1100 ms, TE = 3.9 ms, flip angle = 10, voxel size = 1 x 1 x 1.2mm3) were acquired. Some participants (7 patients and 11 controls) did not complete the
MRI because of the difficulty in lying down or because they refused to perform the MRI scan. A standard MRI template was used in these cases.

MEG acquisition

MEG data were acquired with a 163-magnetometers system placed in a magnetically shielded room (AtB Biomag UG, Ulm, Germany). Data acquisition, pre-processing, and source reconstruction were done as previously described.

Briefly, before each acquisition, four reference positions (nasion, right, and left preauricular and apex) were digitalized. Electrocardiographic and electrooculographic signals were co-recorded. The brain activity of each subject was recorded in two segments, each 3.5 minutes long, during resting state with eyes closed. Data were acquired with a sampling frequency of 1024 Hz, and a 4th-order Butterworth IIR band-pass filter was then applied to remove components below 0.5 and above 48.0 Hz. The filter was implemented offline using Matlab 2019a and the Fieldtrip toolbox.

Data pre-processing

Principal component analysis (PCA) was used to orthogonalize the sensors over the base of the references. Then, after visual selection of the data from an experienced operator, supervised independent component analysis (ICA) was used to remove physiological artefacts such as electrocardiogram and eye blinks (if present).

Source reconstruction

Source reconstruction was performed using the Fieldtrip toolbox. MEG data were co-registered to the MRI and a beamformer approach was used to reconstruct time series related to the centroids of 116 regions of interest (ROIs), derived from the Automated Anatomical Labeling (AAL) atlas. Singular value decomposition was used to obtain a
scalar. We then considered the first 90 ROIs for further analysis, excluding the cerebellum given the low reliability25. The source-reconstructed signals were filtered in the classical frequency bands: delta (0.5 – 4.0 Hz), theta (4.0 - 8.0 Hz), alpha (8.0 - 13.0 Hz), beta (13.0 - 30.0 Hz) and gamma (30.0 - 48.0 Hz).

Analysis of brain dynamics

Neuronal avalanches and branching parameter

To quantify spatio-temporal fluctuations of brain activity, we first estimated neuronal avalanches. As previously described26, an avalanche is defined as an event starting when an unexpected (given a linear process) fluctuation of regional activity is present, and ending when all regions are back to normal activity. The number of activations in all ROIs in an avalanche corresponds to its size. Each of the 90 source-reconstructed signals were \(z \)-transformed and thresholded according to a cut-off of 3 standard deviations (i.e., \(z > |3| \))12. To confirm that the results are not dependent upon the choice of a given threshold, we repeated the analyses setting the threshold to \(z > |2.5| \) and \(z > |3.5| \).

To select a suitable bin length, we computed the branching ratio \(\sigma 27 \) as follows: for each subject, for each time bin size, and for each avalanche, the geometrically averaged ratio of the number of events (activations) between the subsequent time bin and the current time bin was calculated as

\[
\sigma_i = \frac{1}{N_{bin} - 1} \prod_{j=1}^{N_{bin} - 1} \left(\frac{n_{events}(j+1)}{n_{events}(j)} \right)^{1/N_{bin} - 1}
\]

(1)

\[
\sigma = \frac{1}{N_{aval}} \prod_{i=1}^{N_{aval}} (\sigma_i)^{1/N_{aval}}
\]

(2)
where σ_i is the branching parameter of the i-th avalanche in the dataset, N_{bin} is the total amount of bins in the i-th avalanche, $n_{\text{events}}(j)$ is the total number of events active in the j-th bin, and N_{aval} is the total number of avalanches in each participant’s recording.

The bin length equal to three samples yielded a critical process with $\sigma = 1$, hinting at the avalanches as occurring in the context of a dynamical regime near a phase transition. However, we varied time bins from 1 to 5. To compare the dynamics of brain activity among the subjects, we took into consideration the same duration for each participant time series (122.79 seconds). Segments of equal duration were randomly selected from the whole recording. For each avalanche, an avalanche pattern was defined as the set of all areas that were above threshold at any point during the avalanche.

Functional repertoire

For each participant we estimated the functional repertoire, defined as the number of unique avalanche patterns which occurred during the recording12. Unique indicates that each avalanche pattern only counts once towards the size of the functional repertoire (i.e., it does not matter if a given avalanche pattern appears only once or multiple times, as the functional repertoire refers to the kinds of pattern that occurred, not their number per se). A representation of avalanche patterns and the functional repertoire is shown in Figure 1.

Switching between states

A switch is defined as crossing the threshold level, in either direction, and therefore occurs when an active region becomes inactive, and vice versa, between two consecutive time bins. The switch rate (number of switches over duration), averaged over areas, was computed for each participant.
Regional influence on the functional repertoire

At this stage, we split the total functional repertoire into two groups: patterns that occurred in both the clinical and control participants ("shared repertoire"), and patterns that were unique to either group ("group-specific repertoire"). Then, using the Kolmogorov-Smirnov test, we compared the distributions of brain regions occurrences between shared and group-specific repertoires, and performed permutation testing to identify which brain regions were recruited significantly more in the group-specific repertoire than in the shared repertoire. We then tested if these occurrences were higher in the healthy or the patient group.

Multilinear model analysis

We then moved on to test the hypothesis that efficient brain dynamics is linked to the correct functioning of the brain and, hence, the restriction of the functional repertoire is related to disease severity and to clinical staging. To test this hypothesis, we built a multilinear model to predict clinical measures and disease staging, adding brain flexibility (as measured by the size of the functional repertoire)28 to demographic, amnestic and clinical information. Specifically, we considered the ALSFRS-R and the stage of the disease (King’s and MiToS clinical staging systems) as dependent variables, while age, education level, gender, disease duration, phenotype, ECAS scores and size of the functional repertoire were considered as predictors. Multicollinearity was assessed through variance inflation factor (VIF)29. We validated our model using the k-fold cross-validation, with $k = 5$30. Specifically, k iterations were performed to train our model and at each iteration the k^{th} subgroup was used as a test set. The validation was also done using leave-one-out cross validation (LOOCV), see the Supplement.
Statistical analysis

To compare age and educational level between ALS patients and healthy controls we performed a T-test, while Chi-square was used for gender comparison. Permutation testing or Kolmogorov-Smirnov test were performed to compare patients and controls, as appropriate. For permutation testing, the data were permuted 10,000 times, and at each iteration the absolute value of the difference between the two groups was observed, building a null distribution of absolute differences. Finally, the empirical observed difference was rank-ordered against this distribution, yielding a significance value. The relationship between the size of the functional repertoire and clinical scores was investigated in the ALS group using Spearman’s correlation coefficient.

Results were corrected by the False Discovery Rate (FDR), across both parameters and frequency bands, and the significance level was set at P-value < 0.05. We reported the corrected significances throughout the paper. All statistical analyses were performed in Matlab 2019a.

Data availability

Data not provided in the article because of space limitations may be shared (anonymized) at the request of any qualified investigator, conditional to acceptance by the Ethical Committee. The code used is available at https://github.com/pierpaolosorrentino/flexibility_als.

Results

Clinical and demographic characteristics of ALS patients
42 individuals (32 males, 10 females) diagnosed with ALS according to the revised El-Escorial criteria of ALS15 and 42 healthy controls (28 males, 14 females) were enrolled in the study.

We used the total Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R)31 and the ALS clinical staging systems to quantify both symptoms severity and disease staging. Hence, patients were classified according to both the King's32 and the Milano-Torino Staging (MiToS)33 disease staging systems, which are based on the appearance of sequential clinical milestones during ALS.

According to the Strong criteria for cognitive and behavioral assessment in ALS34, 4 patients had cognitive impairment (ALSci), 8 patients had behavioral impairment (ALSbi) and 9 patients both conditions (ALSbci).

Furthermore, 15 patients had a classic phenotype, 16 had lower motor neuron (LMN) dominant phenotypes (i.e., 8 patients had a "flail arm" phenotype, 6 had a "flail leg" phenotype, and 2 patients had a "pure lower motor neuron" phenotype), and 11 had a predominant upper motor neuron (UMN) phenotype.

All clinical information about the cohort, such as ALSFRS-R score, stage of the disease, ALS phenotype, site of onset, disease progression rate, and neurocognitive assessment are reported in Table 1.

Functional repertoire, avalanche patterns and local dynamics

We used source-reconstructed resting-state MEG data acquired from a cohort of ALS patients and healthy controls in order to quantify the functional repertoire, which is the total number of unique avalanche patterns occurred in each individual. A comparison between the two groups revealed that ALS patients expressed a restricted functional repertoire, with a lower
number of visited patterns. More specifically, we observed these results in both the delta ($P = 0.046$; **Figure 2A**) and the theta ($P = 0.046$; **Figure 2B**) frequency bands.

In order to prove the robustness of our results to specific choices of the avalanche threshold and bin length, we tested these variables across a moderate range of values and repeated the analyses. Specifically, we first used different binnings, ranging from 1 to 5. The results remained unchanged, with ALS patients displaying a restricted functional repertoire for all the binnings explored (for binning = 2, $P = 0.009$ (delta band) and $P = 0.010$ (theta band); for binning = 3, $P = 0.010$ (delta) and $P = 0.012$ (theta); for binning = 4, $P = 0.010$ (delta) and $P = 0.015$ (theta); for binning = 5, $P = 0.011$ (delta) and $P = 0.019$ (theta); see eTable 1 in the Supplement). Furthermore, the avalanche threshold was modified, ranging from 2.5 to 3.5. For both cases the differences between the groups were confirmed (for $z = |2.5|$, $P = 0.028$ in delta frequency band and $P = 0.030$ in theta frequency band, while for $z = |3.5|$, $P = 0.005$ and $P = 0.007$ in delta and theta bands, respectively; see eTable 1 in the Supplement).

We also evaluated how many times each active region became inactive, and vice versa (number of switches), finding no significant differences between the two groups (data not shown). These results confirmed that brain dynamics is qualitatively altered in ALS patients, as compared to controls. In fact, the same number of switches means that the rate at which each region changes its status is similar in the two groups. Nonetheless, patients only visit a restricted number of patterns as compared to controls. Hence, the restriction of the functional repertoire is not due to different activation rates, but genuinely reflects impaired flexibility.

Subsequently, we investigated the influence of specific regions on avalanche patterns. Firstly, we compared the distributions of brain regions occurrences between shared and group-specific patterns. The Kolmogorov-Smirnov test confirmed that the two distributions were significantly different ($P < 0.001$), meaning that there was an uneven involvement of brain regions in the avalanches of the two groups. Hence, we conducted a post-hoc analysis
through a permutation test to identify which brain areas occurred more often in the group-specific patterns. The analysis highlighted several brain regions occurring significantly more in the group-specific repertoire than in the shared repertoire (Figure 3). In particular, in the delta frequency band, the right insula ($P = 0.011$), the right putamen ($P = 0.023$) and the pallidum bilaterally ($P = 0.034$ and $P = 0.049$, right and left, respectively) were more often involved in avalanches in the ALS group than in the controls (Figure 3A). Similarly, in the theta band, the right Heschl’s gyrus ($P = 0.025$), the right putamen ($P = 0.031$), the right pallidum ($P = 0.011$) and the right thalamus ($P = 0.045$) occurred mainly in the ALS-specific repertoire (Figure 3B).

Multilinear model analysis

Subsequently, to understand the clinical significance of the restricted functional repertoire observed in ALS patients, we correlated the size of the functional repertoire to the ECAS total score, the ALSFRS-R, and both the King’s and the MiToS clinical staging systems. We observed significant correlations between the size of the functional repertoire and the clinical features in both the delta and the theta frequency bands. Particularly, in the delta band the size of the functional repertoire correlated positively with the ALSFRS-R ($R = 0.37$, $P = 0.019$; see Figure 4A), and negatively with both the King’s ($R = -0.51$, $P = 0.002$; see Figure 4B) and the MiToS ($R = -0.41$, $P = 0.015$; see eFigure 1A in the Supplement) disease staging systems. These results could also be observed in the theta frequency band, where the number of avalanche patterns correlated positively with the ALSFRS-R ($R = 0.40$, $P = 0.015$; see Figure 4C) and negatively with the King’s ($R = -0.53$, $P = 0.002$; see Figure 4D) and the MiToS ($R = -0.47$, $P = 0.005$; see eFigure 1B in the Supplement) staging systems. Conversely, there were no significant correlations between the number of avalanche patterns
and the ECAS total score, neither in the delta band ($R = 0.16$, $P = 0.30$) nor in the theta band ($R = 0.14$, $P = 0.39$) (data not shown).

Then, we used a multilinear model analysis with k-fold cross-validation to evaluate if demographics, clinical and brain dynamics features could predict the ALSFRS-R and the disease stage. We found that the size of the functional repertoire significantly improves the predictive capacity of the model in both the delta and the theta frequency bands (Figure 5 and Figure 6).

In the delta band the model provided significant predictions of the ALSFRS-R (Figure 5 A, B, $R^2 = 0.46$), and both the King’s (Figure 5 C, D, $R^2 = 0.56$) and the MiToS (eFigure 2 A, B, $R^2 = 0.52$) clinical staging systems. Similarly, in the theta band, the ALSFRS-R (Figure 6 A, B, $R^2 = 0.45$), and both the King’s (Figure 6 C, D, $R^2 = 0.53$) and the MiToS (eFigure 2 C, D, $R^2 = 0.50$) staging systems were predicted. The comparison between actual and predicted values obtained through the k-fold validation method was shown in the panels B and D of both Figures 5 and 6, while the residuals distribution was shown in eFigure 3 (delta band) and eFigure 4 (theta band), in the Supplement. No significant contribution of education level, gender, ALS phenotype and ECAS was observed.

We also validated our model using the LOOCV approach. Results were confirmed in both the delta (eFigure 5, 6, 7 in the Supplement) and the theta (eFigure 6, 8, 9 in the Supplement) frequency bands.

Discussion

In this work, we set out to predict clinical impairment in ALS from the flexibility of brain dynamics (i.e. reduced functional repertoire). Our results showed that ALS patients have a restricted functional repertoire as compared to healthy controls. This was demonstrated by the
lower number of distinct (i.e., unique) avalanche patterns. The size of the functional repertoire correlated directly with the ALSFRS-R and negatively with both the King’s and the MiToS clinical staging systems.

It has been proposed that the healthy brain operates in a regime that maximizes flexibility, thereby facilitating adaptive behaviour. The brain in ALS might be operating in a sub-optimal dynamical regime, resulting in more stereotyped activity. We borrow from statistical mechanics the concept of neuronal avalanches: fast, aperiodic bursts of activations that spread across the whole-brain11. If the brain is operating in a regime that allows flexible activity, neuronal avalanches efficiently reconfigure themselves over time26. The restriction of the functional repertoire observed in ALS patients might reflect the effect of pathophysiological processes on the large-scale brain dynamics, as previously observed in other neurodegenerative diseases12,35.

Our results were specific to the delta and the theta frequency bands. However, alterations in regional power or static functional connectivity have been described in all frequency bands36,37. Ours is the first M/EEG study directly addressing the dynamic, aperiodic, scale-free activity in ALS. Hence, on the one hand, comparing our results with previous results, that were based on power-spectra or static connectivity, is not trivial. On the other hand, preliminary evidence from fMRI shows altered low-frequency brain dynamics in ALS38, which corroborates our results (given the comparable time-scales). However, comparing the results should be done cautiously.

In order to test whether some brain regions were specifically important in determining pathological patterns of activity, we analyzed shared and group-specific avalanche patterns. We classified avalanche patterns either as ‘shared’, if they occurred in both groups, or as ‘group-specific’, if they occurred in either group. Our results highlighted several brain regions being recruited significantly more often in ALS-specific neuronal patterns. In
particular, basal ganglia were more often involved in group-specific patterns, in both the delta and the theta frequency bands. This finding may support the key role of sub-cortical regions in recruiting cortical areas and supporting coherent activity across the brain39, their association with cognitive and behavioral deficit in ALS40,41, and corroborates the widespread involvement in ALS42.

Subsequently, we reasoned that, if the \textit{functional repertoire} is capturing a pathophysiological process, then it should be related to the stage of the disease and, in turn, allow its prediction. We found, as said, a positive correlation with the ALSFRS-R and a negative correlation with both the King’s and the MiToS clinical staging systems. Our findings might be framed within the hypothesis that the neuropathological mechanisms in ALS shift the operational regime of the brain to a (presumably) sub-optimal state that no longer allows sufficient flexibility to support correct behavior, thereby relating to disability and staging (as measured by the ALSFRS-R). Consistent with our work, time-resolved approaches showed that reduced temporal variability in ALS relates to disease severity43.

Using a multilinear model analysis, we showed that the size of the functional repertoire is a significant predictor of both clinical staging and impairment, even after accounting for age, education, gender, disease duration, phenotype and ECAS. This supports the hypothesis that pathophysiological mechanisms impair brain flexibility, which could then be used as non-invasive readout.

Our work straightforwardly characterizes qualitative alterations of the whole-brain dynamics. This framework is mathematically grounded linking microscopic mechanisms to changes observed in the data. Hence, in the framework of personalized medicine, it might be possible to use our approach to tailor large-scale mechanistic models to the individual patients. However, to this end, longitudinal studies are warranted. Furthermore, despite the
lower spatial resolution, neuronal avalanches can be observed using EEG, which might allow
the application of our methodology on a wider-scale.

In conclusion, our work shows that: 1) pathophysiological changes in ALS are reflected in
reduced flexibility and, possibly, less effective large-scale communication; 2) sub-cortical
regions contribute to brain dynamics and are affected by the pathophysiological processes of
ALS (however, we found these regions from a post-hoc analysis that was not corrected for
multiple comparison, and this finding should be regarded as merely explorative); 3) the
reduction of flexibility in ALS predicts disease stage as well as clinical impairment.

WNL-2022-201121_sup --- http://links.lww.com/WNL/C297

References

1. Prado L de GR, Rocha NP, de Souza LC, et al. Longitudinal assessment of clinical and

3. D’Angelo E, Wheeler-Kingshott CG. Modelling the brain: Elementary components to

 as amyotrophic lateral sclerosis progresses: a source level magnetoencephalographic

5. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Criticality in large-scale brain

Table 1. Demographic, clinical features and neurocognitive assessment of the cohort.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ALS patients (n = 42), mean (± SD)</th>
<th>HC (n = 42), mean (± SD)</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic and clinical measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>64.81 (± 12.83)</td>
<td>63.10 (± 10.46)</td>
<td>0.50</td>
</tr>
<tr>
<td>Male/female</td>
<td>32/10</td>
<td>28/14</td>
<td>0.35</td>
</tr>
<tr>
<td>Education (years)</td>
<td>10.21 (± 4.61)</td>
<td>11.98 (± 4.01)</td>
<td>0.07</td>
</tr>
<tr>
<td>Disease duration (months)</td>
<td>49.21 (± 58.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALSFRS-R</td>
<td>36.08 (± 8.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease stage</td>
<td>2.56 (± 1.04), King’s</td>
<td>2.40 (± 0.91), MiToS</td>
<td></td>
</tr>
<tr>
<td>Site of onset</td>
<td>8 bulbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 respiratory</td>
<td>2 mixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenotype</td>
<td>15 classic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 predominant LMN</td>
<td>11 predominant UMN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease progression rate</td>
<td>0.42 (± 0.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocognitive assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAS total score</td>
<td>87.49 (± 25.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>20.93 (± 5.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal fluency</td>
<td>15.12 (± 7.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive functions</td>
<td>28.27 (± 10.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>12.05 (± 4.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visuospatial abilities</td>
<td>11.10 (± 1.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive/behavioral impairment</td>
<td>4 ALSci</td>
<td>8 ALSbi</td>
<td>9 ALSbci</td>
</tr>
</tbody>
</table>
ALS = Amyotrophic Lateral Sclerosis; ALSbi = Amyotrophic Lateral Sclerosis behavioural impairment; ALSbci = Amyotrophic Lateral Sclerosis behavioural and cognitive impairment; ALSci = Amyotrophic Lateral Sclerosis cognitive impairment; ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; ECAS = Edinburgh Cognitive and Behavioural ALS Screen; HC = Healthy Controls; LMN = Lower Motor Neuron; MiToS = Milano-Torino Staging; SD = Standard Deviation; UMN = Upper Motor Neuron.

Figure legends

Figure 1. Schematic representation of neuronal avalanches and functional repertoire.

(A) Source-reconstructed time series. Light blue rectangles represent the time frames in which neuronal avalanches occur; red dots in the rectangles denote activated brain regions (signal above threshold) in a time interval (msec). (B) In the boxes, avalanche patterns of three different neuronal avalanches are illustrated (for clarity, the avalanches reported last up to 4 time frames). An avalanche is defined as an event that begins when at least one brain region deviates from its baseline activity (above threshold) and ends when all regions display a typical level of activity (below threshold). Given a neuronal avalanche, its corresponding pattern is the set of all the brain areas that were recruited at any time. The brains-plots for each time frame of an avalanche show the areas above (yellow) and below (blue) threshold. Each matrix represents an avalanche pattern: dark blue squares indicate the brain regions (ROIs) activated at a certain time frame, while the light blue ones are all the regions that have been activated up to that moment. (C) In the green boxes, for each of the above avalanches, the brain-plot and the set of unique avalanche patterns are illustrated. Unique means that each avalanche pattern only counts once toward the size of the functional repertoire. The number of unique avalanche patterns defines the size of the functional repertoire and is used as a proxy for the flexibility of the brain dynamics.
Figure 2. Comparison of the number of unique avalanche patterns. Box plots illustrating the differences in the size of the functional repertoire in healthy controls (HC) and ALS patients (ALS), in delta (A) and theta (B) frequency bands. The central mark in the box indicates the median, the edges of the box the 25th and 75th percentiles, and the whiskers extend to the 10th and 90th percentiles. The outliers are plotted individually using dots. Significance P-value: *$P < 0.05$, corrected. The figure was made using Matlab 2019a.
Figure 3. Mapping of brain regions occurring significantly more in the ALS-specific unique avalanche patterns. In particular, in the delta frequency band (A), the right insula ($P = 0.011$), the right putamen ($P = 0.023$) and the pallidum bilaterally ($P = 0.034$ and $P = 0.049$, right and left, respectively) are more often involved in avalanches in the ALS group than in the controls. Similarly, in the theta band (B), the right Heschl’s gyrus ($P = 0.025$), the right putamen ($P = 0.031$), the right pallidum ($P = 0.011$) and the right thalamus ($P = 0.044$) occur mainly in the ALS-specific repertoire. Significance was set as $P < 0.05$. The image was made using Matlab 2019a, including BraiNetViewer v. 1.62.
Figure 4. The relationship between brain dynamics and clinical features in the ALS group in the delta (A, B) and the theta (C, D) frequency bands. (A) Positive correlation between the number of unique avalanche patterns and the ALSFRS-R \((R = 0.37, P = 0.019)\) and (B) negative correlation between the number of patterns and the King’s clinical staging system \((R = -0.51, P = 0.002)\) in the delta band; (C) Positive correlation between the number of unique avalanche patterns and the ALSFRS-R \((R = 0.40, P = 0.015)\) and (D) negative correlation between the number of patterns and the King’s clinical staging system \((R = -0.53, P = 0.002)\) in the theta band. Spearman’s correlation coefficient was used and results were corrected by False Discovery Rate (FDR) correction. Significance \(P\)-values: \(*P < 0.05, **P < 0.01.\) The figure was made using Matlab 2019a.
Figure 5. Multilinear model with k-fold cross-validation in the delta frequency band.

Using as predictors age, education, gender, disease duration, ALS phenotype, ECAS and size of the functional repertoire, the model predicts: (A) the ALSFRS-R (age: $P = 0.038$, $\beta = -0.23$; disease duration: $P = 0.020$, $\beta = -0.05$; functional repertoire: $P < 0.001$, $\beta = 0.11$); (B) the King’s clinical staging system (disease duration: $P < 0.01$, $\beta = 0.01$; functional repertoire: $P < 0.001$, $\beta = -0.02$).

In the panels A, C, the explained variance of the variable to be predicted as a function of the predictors is illustrated. Significant predictors are indicated by asterisks; positive and negative coefficients are illustrated with β^+ and β^-, respectively; significance P-values: $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$. In the panels B, D, scatter plots of the comparison between actual and predicted values are reported. The figure was made using Matlab 2019a.
A

R squared of predictors in step addition

Explained ALSFRS variance (R²)

β-

β-
Figure 6. Multilinear model with k-fold cross-validation in the theta frequency band.

Using as predictors age, education, gender, disease duration, ALS phenotype, ECAS and size of the functional repertoire, the model predicts: (A) the ALSFRS-R (age: $P = 0.024$, $\beta = -0.25$; disease duration: $P = 0.041$, $\beta = -0.04$; functional repertoire: $P < 0.001$, $\beta = 0.05$); (B) the King’s clinical staging system (disease duration: $P = 0.024$, $\beta = 0.01$; functional repertoire: $P < 0.001$, $\beta = -0.01$).

In the panels A, C, the explained variance of the variable to be predicted as a function of the predictors is illustrated. Significant predictors are indicated by asterisks; positive and negative coefficients are illustrated with β^+ and β^-, respectively; significance P-values: *$P < 0.05$, ***$P < 0.001$. In the panels B, D, scatter plots of the comparison between actual and predicted values are reported. The figure was made using Matlab 2019a.
Flexibility of Fast Brain Dynamics and Disease Severity in Amyotrophic Lateral Sclerosis
Arianna Polverino, Emahnuel Troisi Lopez, Roberta Minino, et al.
Neurology published online September 30, 2022
DOI 10.1212/WNL.0000000000201200

This information is current as of September 30, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/09/30/WNL.0000000000201200.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Alzheimer's disease
http://n.neurology.org/cgi/collection/alzheimers_disease
Assessment of cognitive disorders/dementia
http://n.neurology.org/cgi/collection/assessment_of_cognitive_disorders_dementia
Cognitive neuropsychology in dementia
http://n.neurology.org/cgi/collection/cognitive_neuropsychology_in_dementia
Dementia with Lewy bodies
http://n.neurology.org/cgi/collection/dementia_with_lewy_bodies
Neuropsychological assessment
http://n.neurology.org/cgi/collection/neuropsychological_assessment

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.