Alcohol Intake as a Risk Factor for Acute Stroke: The INTERSTROKE Study

Author(s):
Andrew Smyth, MB BCh BAO MSc PhD1,2; Martin O’Donnell, PhD1,2; Sumathy Rangarajan, MSc1; Graeme J. Hankey, MBBS, MD, FRACP3; Shahram Oveisgharan, MD4; Michelle Canavan, MBChBAO PhD5; Clodagh McDermott, MB BCh BAO MSc1; Denis Xavier, MD6; Hongye Zhang, MD6; Albertino Damasceno, MD7; Alvaro Avezum, MD8; Nana Pogosova, MD9; Aytekin Oguz, MD10; Danuta Ryglewicz, MD PhD11; Helle Klingenberg Iversen, MD12; Fernando Lanas, MD13; Annika Rosengren, MD14; Salim Yusuf, DPhil1; Peter Langhorne, PhD15 on behalf of the INTERSTROKE Investigators

Corresponding Author:
Andrew Smyth, andrew.smyth@nuigalway.ie

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada; 2. HRB Clinical Research Facility Galway, Department of Medicine, NUI Galway, Galway, Ireland; 3. Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia; 4. Rush Alzheimer Disease Research Center, Rush University Medical Center, Chicago, IL, USA; 5. St John’s Medical College and Research Institute, Bangalore, India; 6. Beijing Hypertension League Institute, Beijing, China; 7. Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique; 8. Hospital Alemao Oswaldo Cruz, Sao Paulo, Brazil; 9. National Medical Research Center of Cardiology, Moscow, Russia; 10. Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey; 11. Military Institute of Aviation Medicine, Warsaw, Poland; 12. Stroke Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; 13. Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; 14. Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 15. Academic Section of Geriatric Medicine, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK

Equal Author Contribution:

Contributions:
Andrew Smyth: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Martin O’Donnell: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Sumathy Rangarajan: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Graeme J. Hankey: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Shahram Oveisgharan: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Michelle Canavan: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Clodagh McDermott: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Denis Xavier: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Hongye Zhang: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Alvaro Avezum: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Albertino Damasceno: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Nana Pogosova: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Aytekin Oguz: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Danuta Ryglewicz: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Helle Klingenberg Iversen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Fernando Lanas: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Annika Rosengren: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Salim Yusuf: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Peter Langhorne: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data

Figure Count:
3

Table Count:
2
Search Terms:

Acknowledgment:
The authors would like to thank and acknowledge the contribution of all study participants and staff at study centres across the world.

Study Funding:
The INTERSTROKE study was funded by the Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Canadian Stroke Network, Swedish Research Council, Swedish Heart and Lung Foundation, The Health & Medical Care Committee of the Regional Executive Board, Regiona Västra Götaland (Sweden), and through unrestricted grants from several pharmaceutical companies with major contributions from AstraZeneca, Boehringer Ingelheim (Canada), Pfizer (Canada), MSD, Chest, Heart and Stroke Scotland, and the Stroke Association, with support from The UK Stroke Research Network. The Department of Neurology at the University Duisburg-Essen received research grants from the German Research Council (DFG), German Ministry of Education and Research (BMBF), European Union, National Institutes of Health, Bertelsmann Foundation, and Heinz-Nixdorf Foundation.

Disclosures:
The authors report no disclosures relevant to the manuscript.

Preprint DOI:

Received Date:
2022-03-24

Accepted Date:
2022-08-26

Handling Editor Statement:
Submitted and externally peer reviewed. The handling editor was José Merino, MD, MPhil, FAAN.
Abstract

Background and Objectives: There is uncertainty about the association between alcohol consumption and stroke, particularly for low-moderate intake. We explored these associations in a large international study.

Methods: INTERSTROKE, a case-control study, is the largest international study of risk factors for acute stroke. Alcohol consumption was self-reported and categorised by drinks/week as low (1-7), moderate (7-14 for females, 7-21 for males) or high (14 for females, 21 for males). Heavy episodic drinking (HED) was defined as >5 drinks on ≥1 day per month. Multivariable conditional logistic regression was used to determine associations.

Results: We included 12,913 cases and 12,935 controls; 25.0% (n=6,449) were current drinkers, 16.7% (n=4,318) former and 58.3% (n=15,076) never drinkers. Current drinkers were younger, male, smokers, active and with higher-paid occupations. Current drinking was associated with all stroke (OR 1.14; 95% CI 1.04-1.26) and intracerebral hemorrhage (ICH) (OR 1.50, 95% CI 1.21-1.84) but not ischaemic stroke (OR 1.06; 95% CI 0.95-1.19). HED pattern was associated with all stroke (OR 1.39; 95% CI 1.21-1.59), ischaemic stroke (OR 1.29; 95% CI 1.10-1.51) and ICH (OR 1.76; 95% CI 1.31-2.36). High level of alcohol intake was consistently associated with all stroke, ischaemic stroke and ICH. Moderate intake was associated with all stroke and ICH, but not ischaemic stroke. Low alcohol intake was not associated with stroke overall but there were regional differences; low intake was associated with reduced odds of stroke in Western Europe/North America (OR 0.66; 95% CI 0.45-0.96) and increased odds in India (OR 2.18; 95% CI 1.42-3.36)(p-interaction 0.037). Wine consumption was associated with reduced odds of all stroke and ischaemic stroke but not ICH. The magnitudes of association were greatest in those without hypertension and current smokers.

Discussion: High and moderate intake were associated with increased odds of stroke, while low intake was not associated with stroke. However, there were important regional variations, which may relate to differences in population characteristics of alcohol consumers, types or patterns of consumption.
Introduction

Stroke is a leading cause of death and disability globally. Although age-specific incidence appears to be declining in some high-income countries, it is increasing in low- and middle-income countries. Therefore, there is an urgent need to understand the contribution of existing and emerging risk factors for stroke at a population-level.

Alcohol use is recognised as a risk factor for a range of diseases. In particular, heavy episodic (binge) drinking (HED) or high intake increases the risk of conditions that are major contributors to a global burden of premature mortality, including physical injury, cardiovascular disease (CVD) and certain types of cancer. While light to moderate alcohol use has been associated with a reduced risk of some cardiovascular events, there remains considerable uncertainty for stroke as apparently protective effects from light or moderate intake may be an artefact of residual confounding. In addition, Mendelian randomisation studies and large population cohorts (generally from high-income countries) suggest that light-moderate alcohol consumption in mid-life is not associated with a reduced risk of stroke. Given the high global frequency of light-moderate alcohol consumption, it is of considerable relevance to determine whether it is associated with the risk of stroke.

Alcohol use is a complex exposure, with diversity in alcohol products (types and quality) and social context of consumption, which may further vary by region and culture. For example, alcohol intake is an integral part of social life in many countries (e.g. Europe), but discouraged or prohibited in others. Therefore, alcohol consumption as an exposure may represent a multitude of direct and indirect factors, which differ between regions and populations. A limitation of current evidence is that most studies were completed in high-income countries and there are relatively sparse data for low- and middle-income countries, where alcohol use is increasing and associations with health may be different.

INTERSTROKE identified that ten modifiable risk factors were collectively associated with 90% of the global population-attributable risk of stroke. As INTERSTROKE recruited from a geographically and ethnically diverse population, it is ideally placed to further explore global associations between alcohol intake and stroke.

Methods

INTERSTROKE is a large international case-control study whose details were published previously. In brief, cases were defined as patients with first stroke (within 5 days of symptom onset and admitted to hospital within three days of presentation) were recruited from 142 centres in 32 countries between March 2007 and July 2015. Neuroimaging was completed in 99.9% of cases. Information was obtained from the patient or a proxy respondent. Controls, without acute
stroke, were recruited from the community or hospital and matched to cases for age (<5 years difference or <10 years if aged >90 years), sex, and geographical region. We excluded participants from countries where >95% of controls reported never drinking alcohol (Pakistan, Kuwait, Iran and Saudi Arabia) as responses to the questions on alcohol consumption may not be reliable due to cultural beliefs and social desirability bias.

Risk factors were assessed through standardised structured questionnaires (completed by the participant, proxy or both) and physical examination. Blood pressure was measured at the time of interview and estimated pre-admission level. Self-reported items included medical history, physical activity, diet (assessed using the healthy eating index (HEI)), smoking and psychological factors. Hypertension was defined as a self-reported history of hypertension or blood pressure (BP) ≥140/90mmHg (including adjusted admission blood pressure, as previously described). Diabetes mellitus was defined as self-reported history of diabetes or HbA1c ≥6.5%. Countries were grouped: (i) Western Europe and North America (Canada, Australia, Germany, Denmark, Sweden, United Kingdom and Ireland); (ii) Eastern and Central Europe (Croatia, Poland, Turkey, and Russia); (iii) China; (iv) South America (Argentina, Brazil, Chile, Colombia, Ecuador and Peru); (v) Southeast Asia (Thailand, Philippines and Malaysia); (vi) India; (vii) Africa (South Africa, Mozambique, Uganda, Sudan and Nigeria).

Alcohol intake was reported as never, former or current drinker and further characterised based on total weekly intake as low (1-7 drinks), moderate (7-14 drinks for women or 7-21 drinks for men) or high intake (>14 drinks for women or >21 drinks for men). Heavy episodic drinking (HED) pattern was defined as >5 drinks in one day at least once a month over the previous 12 months. Participants were classified by predominant type of alcohol consumption as (i) beer or other; (ii) wine or (iii) spirit or arrack.

All data were transferred to Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada, for quality control. The study was approved by ethics committees in all centres or countries and participants (or proxy) provided written informed consent.

Statistical analysis

We calculated means and medians to summarize continuous variables, compared by t-tests or appropriate non-parametric tests. Conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for all analyses, other than subgroup analysis where we primarily used unconditional logistic regression. Multivariable adjustment included hypertension (yes vs. no), smoking (never or former vs. current), diet quality (thirds of HEI), physical activity, and psychological factors.
activity (inactive vs. active), diabetes (yes vs. no), cardiac risk factors (yes vs. no), lipid levels (thirds of ApoB:ApoA) and stress (little or none vs. moderate or severe). Unconditional models were also adjusted for age (continuous), sex (males vs. female), and geographic region (seven categories, as previous).

For our primary analyses, we present associations between alcohol intake and all stroke, ischemic stroke and intracerebral haemorrhage (ICH). For analyses stratified by region or subgroup and all sensitivity analyses, we present associations with all stroke only. We explored if associations differed by cardiovascular risk factors (hypertension, diabetes, physical activity, diet and smoking), level of wealth and education. For analyses by predominant alcohol type, we hypothesised that the associations by predominant alcohol intake would differ between those with and without HED pattern or different levels of intake; therefore we included these variables on additional adjustment. Differential effects between strata were considered statistically significant if the p-value for the interaction between the stratifying variable and measure of alcohol intake was <0.05.

As sensitivity analyses, we restricted our sample only to those that completed the questionnaire themselves (to reduce potential bias introduced by proxies). Second, we hypothesised that factors influencing the likelihood that an individual consumes alcohol varies significantly between regions and may be a major source of confounding as these factors are also associated with stroke. Therefore, we completed sensitivity analyses where we calculated propensity-score for current alcohol consumption and drinkers were matched with never drinkers (i.e. matched on alcohol status rather than case control). We used logistic regression to predict the probability of current vs. never consuming alcohol for every individual in the study (cases and controls), including age, sex, income, occupation, education, geographical region, smoking, hypertension, lipids, diet, physical activity, and diabetes. Participants were matched to nearest neighbour, without replacement, based on propensity to current alcohol consumption. All propensity-score based matching was completed within strata of sex, to ensure full matching by sex. Similarly, we also hypothesised that factors influencing the predominant type of alcohol consumed varies between regions and may be a source of confounding. Therefore, we completed analyses where we calculated propensity-score for predominant alcohol type and drinkers were matched with never drinkers (i.e. matched on predominant alcohol type rather than case control). We used the same methodology as described previously for propensity to current vs. never consuming alcohol. Adjusted conditional and unconditional logistic regression are presented for associations between alcohol and all stroke for the propensity score based matched analyses. Post-hoc, we identified that predominant wine drinkers had reduced odds of stroke; therefore we sought to explore for evidence of a dose-response in the association between absolute intake (number of drinks per week) and...
odds of stroke, dichotomised by predominant wine vs. non-wine drinkers, through restricted cubic splines with five knots and unconditional multivariable adjusted logistic regression.

All statistical analyses were performed with Stata/MP 16.1 and a p-value of <0.05 was considered statistically significant.

Data Access & Availability

The Principal Author has full access to the data used in the analyses in this manuscript and takes full responsibility for the data, the analyses and interpretation of findings and has the right to publish these findings. Anonymised data not published within this article may be made available on request from any qualified investigator.

Results

We include 96% of cases (n=12,913) and controls (n=12,935) from INTERSTROKE, whose characteristics were published previously17. Overall, mean age was 61.8(SD13.4) years and 40.5% (n=10,458) were female (Table 1). Questionnaires were completed by patients (42.5%), proxy (35.8%), or both (21.7%).

Alcohol Intake

Overall, 25.0% (n=6,449) were current drinkers, 16.7% (n=4,318) former drinkers and 58.3% (n=15,076) never drinkers (Table 1). Current drinking was more common in males (p<0.001) and in Western Europe/North America and Australia and South America but least common in India and South East Asia (p<0.001) (Figure 1A). Current drinkers were more likely to be younger, current smokers, physically active and had higher paid occupations (Table 1). Never drinkers had the lowest prevalence of hypertension, high cholesterol, previous CVD and medication use, but the highest prevalence of diabetes. Participants with a first stroke had higher cardiovascular risk factor profiles than those without stroke, consistent with previous reports (eTable 1 in the Supplement). There were significant regional variations in the associations of current drinking and some risk factors, including hypertension, physical activity and diet quality (eTable 2 in the Supplement).

Within current drinkers, HED was more common among males (p<0.001), in China and South East Asia and least common in Eastern and Central Europe (p<0.001)(Figure 1B). Those with HED were younger, more likely to be current smokers and mainly inactive but less likely to have hypertension, diabetes, high cholesterol and CVD (eTable 3 in the Supplement).
High intake was more common in males (p<0.001) and in China but least common in Western Europe and North America (p<0.001) (Figure 1C). Those with high intake were younger and more likely to be less educated, current smokers, mainly inactive and to have hypertension, diabetes and previous CVD (eTable 3 in the Supplement).

Predominant wine consumption was more common in females (p<0.001), Western Europe and North America, Eastern and Central Europe and South America (p<0.001)(Figure 1D). Spirit or arrack consumption was most common in males, China and India. Wine drinkers were older, more likely to have higher levels of education, professional or business occupations and to be mainly active with higher diet quality (eTable 4 in the Supplement). Spirit or arrack drinkers were more likely to be less educated, current smokers, mainly inactive and to work as labourers or farmers.

Alcohol Intake and Stroke

After multivariable adjustment, current drinking was associated with increased odds of all stroke (OR 1.14; 95% CI 1.04-1.26) and ICH (OR 1.50; 95% CI 1.21-1.85) but not associated with ischemic stroke (OR 1.06; 95% CI 0.95-1.19)(Figure 2)(eTable 5 in the Supplement). There was no association between former drinking and stroke. Within current drinkers, HED was associated with all stroke (OR 1.39; 95% CI 1.21-1.59), ischemic stroke (OR 1.29; 95% CI 1.10-1.51) and ICH (OR 1.76; 95% CI 1.31-2.37). Compared to never drinkers, there was no association between low intake and all stroke or ischemic stroke but increased odds of ICH (OR 1.39, 95% CI 1.04-1.86). High alcohol intake was consistently associated with all stroke (OR 1.57; 95% CI 1.31-1.89), ischemic stroke (OR 1.55; 95% CI 1.26-1.90) and ICH (OR 1.59; 1.06-2.39). Predominant beer or other alcohol was associated with all stroke (OR 1.21; 95% CI 1.03-1.44) and ICH (OR 1.73; 95% CI 1.21-2.46) but not ischemic stroke. Predominant wine consumption was not associated with stroke. Predominant spirit or arrack consumption was associated with increased odds of all stroke (OR 1.23; 95% CI 1.07-1.41) and ischemic stroke (OR 1.18; 95% CI 1.00-1.39) but not ICH. With additional adjustment for HED and level of intake, associations between beer or other alcohol and spirit or arrack consumption and stroke were attenuated, while the associations between wine consumption and stroke demonstrated a significantly lower risk for all stroke (OR 0.67; 95% CI 0.49-0.91) and ischemic stroke (OR 0.69; 95% CI 0.49-0.97) but not ICH.

Alcohol Intake and Stroke by Geographical Region

There were significant differences in the associations of alcohol intake with odds of all stroke by geographical region (Table 2). Current drinking was associated with reduced odds of stroke in Western Europe and North America,
increased odds of stroke in India and South America but not associated with stroke in other regions (p<0.001). Among current drinkers: (i) the greatest magnitudes of association between HED and all stroke were seen in South America, Africa and India (p<0.001); (ii) the greatest magnitude of association between high intake and all stroke were seen in China and South East Asia (p=0.037); and (iii) there were no significant differences in the association between predominant alcohol type and all stroke.

Subgroup Analyses

The magnitudes of association between all stroke and current drinking, HED or high intake were greatest in those without hypertension (all p=0.001) and among current smokers (all p<0.001) (eTable 6 in the Supplement). For current drinking and HED the magnitudes of the associations were greatest in those with lowest tertile of diet quality (both p=0.03). There were no significant differences in associations stratified by physical activity or diabetes. The magnitude of association between current drinking and all stroke was greatest in those with the lowest level of education (p=0.02) but there were no significant differences for HED (p=0.27) or level of intake (p=0.21). There were no differences in the associations between alcohol consumption and all stroke on stratification by thirds of wealth index.

Sensitivity Analyses

Analyses restricted to participants who completed questionnaires themselves (i.e. excluding proxy contributors) showed associations of similar magnitude and direction to our primary analyses, although confidence intervals were wider (eTable 7 in the Supplement). Propensity-score based matching for current vs. never drinking yielded 3,879 matched pairs, well matched for all factors but gender (12.8% never drinkers vs. 14.7% current drinkers were female, p=0.013)(eTable 8 in the Supplement). Unadjusted and adjusted conditional logistic regression models show no directional or significant magnitudinal changes in associations between all stroke and current drinking, HED or level of intake, compared to our primary analyses (Figure 3)(eTable 9 in the Supplement). Propensity-score based matching for predominant alcohol type vs. never drinking yielded 1,607 matched pairs for beer or other drinking, 709 matched pairs for wine drinkers and 2,287 pairs for spirit or arrack drinkers, well matched for factors (eTable 10 in the Supplement). Associations were largely similar for beer or other drinkers and spirit or arrack drinks, but the magnitude of the association indicating lower risk was more marked for predominant wine drinkers (eTable 11 in the Supplement).
was no consistent increase in odds of all stroke by absolute level of intake in predominant wine drinkers but a significant increase in predominant non-wine drinkers (eFigure 1 in the Supplement).

Discussion

In this large international study, we report that current alcohol consumption is associated with all stroke and greater magnitude of association for ICH, after multivariable adjustment. A pattern of heavy episodic drinking and high levels of alcohol intake were both associated with increased risk of all stroke, ischemic stroke and ICH and we did not observe any reduction in odds of stroke with low alcohol consumption, compared to never drinkers. There were differences in association by the predominant type of alcohol consumed with increased odds of stroke with spirit, arrack, beer or other alcohol consumption but not wine. Additional adjustment for a heavy episodic drinking pattern and level of alcohol consumption yielded a significant reduction in the odds of all stroke and ischemic stroke for predominant wine drinkers.

Our findings are generally consistent with findings from other international studies, including the INTERHEART6, 19 and PURE studies16, 21 and previous meta-analyses14, 22-24 that explored other cardiovascular outcomes in relation to alcohol intake. In general, the conclusions are similar25; high alcohol intake was associated with harm, low alcohol intake was associated with little or no protection, and there were complex regional variations. It is hypothesized that alcohol consumption is associated with stroke through multiple mechanisms, including increased blood pressure, alterations in cholesterol, reductions in fibrinogen, altered endothelial function, modulation of inflammation and provocation of atrial fibrillation or other cardiac arrhythmias26. The main overall associations of alcohol intake and stroke are also consistent with large epidemiological studies using Mendelian randomization approaches. The largest of these studies, involving 161,498 participants, reported that genotype-predicted alcohol intake was associated with a log-linear increase in risk of stroke with predicted alcohol intake >10 units per week, that was higher for ICH than ischemic stroke12. They did not report a lower risk of stroke with low-moderate intake, which contrasts with the results of their conventional epidemiological analyses that observed a J-shaped association. Our overall findings are more consistent with their Mendelian randomization analyses than their traditional epidemiological approach.
Heavy episodic drinking and high alcohol were both associated with increases in all stroke, ischemic stroke and ICH and magnitudes of association were greatest in those without hypertension and in current smokers. There were significant differences in the characteristics of those who engage in HED or high levels of intake; they were more common in males and was more prevalent in certain regions (e.g. China). Therefore, it is likely that targeted interventions to manage HED or high alcohol intake could be expected to result in consistent benefits across populations, but different influences on the absolute incidence of stroke in different regions and between men and women. The associations between alcohol intake and stroke were seen after correcting for other risk factors, suggesting that alcohol intake exerts an effect, separate from any impact on other risk factors, although we cannot exclude residual confounding or additional impacts of behavioural, social or environmental factors.

A wide range of alcoholic drinks were reported by participants and when we classified individuals by predominant beverage consumed there were important differences in characteristics between groups. Predominant wine consumption was more common among older individuals, women, in those with higher levels of education and occupation and most prevalent in Europe and the Americas. This contrasts significantly with predominant spirit or arrack consumption which was more common in younger individuals, men, lower levels of education and occupation and most prevalent in China and India. This suggests that there are important societal, cultural and socioeconomic factors that influence the predominant type of alcohol consumed as well as current drinking. For all stroke, we report increased odds of all stroke with spirit, arrack, beer or other alcohol consumption, but not wine consumption. In addition, when we also adjusted for HED and level of intake, we found that wine consumption was associated with significantly reduced odds of all stroke and ischemic stroke. Our propensity-matched analyses (for current drinking and predominant alcohol type) showed consistent findings to our primary analyses. It is unclear if this directionally different association of wine consumption with stroke, compared to other alcohol types, relates to a specific difference in cardiovascular effects of low-moderate consumption of different alcohol types\(^\text{16, 27, 28}\), or differences in the social and behavioural context of wine consumers (for example those consuming wine had higher diet scores and higher level of physical activity).

The major strength of this study is that it included a very large study population and was carried out in many countries, in different regions, and involved individuals with different ethnicities\(^\text{17}\). The case control design provided a practical approach to achieving the level of diversity that is more representative of global alcohol consumption patterns than studies conducted in a single or limited number of countries in a region. It also includes populations that have previously been excluded. We included a large number of possible covariates to minimize the effects of confounding and
employed multiple analytic approaches (conditional and unconditional logistic models and propensity-matched analyses), with consistent findings, irrespective of the approach taken. These features increase the generalizability and robustness of our study findings.

Our study has a few potential limitations. Firstly, a case control design may be potentially open to biases if there is differential recollection of alcohol use between cases and controls, it may lead to recall bias29, 30, where cases may over- or under-estimate alcohol consumption and bias results away from or towards the null, depending on the social or cultural context. This potential source of bias may also be exacerbated in those where the questionnaire was completed by or with the assistant of a proxy. However, sensitivity analyses restricted to only those that completed the questionnaire themselves were consistent with our primary analyses. Selection bias may have resulted from the approach used to identifying controls; this was reduced by excluding controls with a hospital referral diagnosis linked to stroke/TIA and using standardized data collection methods which were applied in the same way to participants with first stroke and controls. Social desirability bias31 may be likely to occur where alcohol use is taboo as respondents may under-estimate or underreport consumption, compared to countries where drinking is socially acceptable. Therefore, we excluded countries with the highest prevalence of never drinking in controls. Despite this, the prevalence of current alcohol consumption within controls in INTERSTROKE were lower than estimates from the global burden of disease, although current alcohol consumption does reduce with increasing age32. In common with most observational studies, causality cannot be firmly established. Although we adjusted for multiple confounders and our propensity-score analyses were similar to our primary results, the associations observed between alcohol consumption and stroke may be influenced by residual confounding, unmeasured confounders (e.g. genetic differences, variation in alcohol type or preparation) and heterogeneity of social circumstances. Further work is required to explore if the association between alcohol consumption and stroke is causal, including large cohort studies, as clinical trials are not feasible in this area. Other important limitations are that we were confined to those who survived stroke long enough to reach hospital. We found no association between former alcohol consumption and stroke, perhaps surprising as some individuals stop consuming alcohol due to illness or medical conditions (consistent with the sick quitters hypothesis33, 34). However, it is also possible that some individuals classified as never drinkers may have stopped drinking for health reasons, leading to an underestimation of associations. Finally, even a large study like INTERSTROKE can have limited power to quantify alcohol effects within some of the countries or regions. Findings in particular geographic regions such as East and Central Europe, Africa, South East Asia and South America require further exploration within the respective countries.
Conclusions

Heavy episodic drinking and high alcohol intake were associated with increased odds of all stroke, ischemic stroke and intracerebral haemorrhage. While the prevalence of this risk factor may vary by age, sex, and region, the relative increase in odds was consistent across these subgroups. Future initiatives at ensuring healthy lifestyles should include a reduction in high alcohol intake and binge drinking. We did not observe any convincing reduction in stroke risk with low or moderate intake.

Appendix 2. Coinvestigators

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafael Diaz, MD</td>
<td>Argentina</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Argentina</td>
</tr>
<tr>
<td>John Varigos, MD</td>
<td>Australia</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Australia</td>
</tr>
<tr>
<td>Lishen Liu, MD</td>
<td>China</td>
<td>Joint National Leader</td>
<td>Co-Led conduct of INTERSTROKE in China</td>
</tr>
<tr>
<td>Patricio Lopez-Jaramillo, MD</td>
<td>Colombia</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Colombia</td>
</tr>
<tr>
<td>Zvonko Rumboldt, PhD</td>
<td>Croatia</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Croatia</td>
</tr>
<tr>
<td>Ernesto Peñaherrera, MD</td>
<td>Ecuador</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Ecuador</td>
</tr>
<tr>
<td>Hans-Christoph Diener, PhD</td>
<td>Germany</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Germany</td>
</tr>
<tr>
<td>Prem Pais, MD</td>
<td>India</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in India</td>
</tr>
<tr>
<td>Osamah Albaker,</td>
<td>Kuwait</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Kuwait</td>
</tr>
<tr>
<td>MD</td>
<td>Country</td>
<td>Position</td>
<td>Role</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Khalid Yusoff, DMedSc~</td>
<td>Malaysia</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Malaysia</td>
</tr>
<tr>
<td>Okechukwu Ogah, PhD</td>
<td>Nigeria</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Nigeria</td>
</tr>
<tr>
<td>Adesola Ogunniyi, MD</td>
<td>Nigeria</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Nigeria</td>
</tr>
<tr>
<td>Romaina Iqbal, PhD</td>
<td>Pakistan</td>
<td>National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Pakistan</td>
</tr>
<tr>
<td>German Malaga, MD</td>
<td>Peru</td>
<td>National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Peru</td>
</tr>
<tr>
<td>Antonio Dans, MD</td>
<td>Philippines</td>
<td>National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Philippines</td>
</tr>
<tr>
<td>Anna Członkowska, MD</td>
<td>Poland</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Poland</td>
</tr>
<tr>
<td>Fawaz Al Hussain, MD</td>
<td>Saudi-Arabia</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Saudi Arabia</td>
</tr>
<tr>
<td>Linda DeVilliers, MD</td>
<td>South Africa</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in South Africa</td>
</tr>
<tr>
<td>Ahmed Elsayed, MD</td>
<td>Sudan</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Sudan</td>
</tr>
<tr>
<td>Yongchai Nilanont, MD</td>
<td>Thailand</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Thailand</td>
</tr>
<tr>
<td>Samart Nidhinandana, MSc</td>
<td>Thailand</td>
<td>Co-National Leader</td>
<td>Co-Led conduct of INTERSTROKE in Thailand</td>
</tr>
<tr>
<td>Charles Mondo, MD</td>
<td>Uganda</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in Uganda</td>
</tr>
<tr>
<td>Afzal Hussein Yusufalij,</td>
<td>UAE</td>
<td>National Leader</td>
<td>Led conduct of INTERSTROKE in UAE</td>
</tr>
</tbody>
</table>
References

Figure 1. Alcohol Consumption by Sex & Geographical Region

A. Alcohol history

B. Heavy episodic drinking

C. Level of intake

D. Predominant alcohol type
Figure 2. Association Between Alcohol Consumption and Stroke

Conditional logistic regression adjusted for hypertension, smoking, AHEI, physical activity, diabetes, cardiac risk factors, apob_aapa, age, stress with pairs matched for age, sex and region; "additional adjustment for heavy episodic drinking pattern and level of intake
Figure 3. Propensity Score (for Current Drinking) Matched Analyses for the Association between Alcohol Intake and All Stroke

Propensity score for current vs. never drinking with adjusted for hypertension, smoking, AHEI, physical activity, diabetes, cardiac risk factors, apob_apoa, and stress; ~additional adjustment for age, sex and region
Table 1. Characteristics of Cohort by Alcohol History

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of Cohort by Alcohol History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (n=25,848)</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>61.8 (13.4)</td>
</tr>
<tr>
<td>Education, % (n)</td>
<td>48.4% (12,504)</td>
</tr>
<tr>
<td>Occupational, % (n)</td>
<td>51.8% (13,81)</td>
</tr>
<tr>
<td>Smoking, % (n)</td>
<td>58.3% (15,048)</td>
</tr>
<tr>
<td>Physical Activity, % (n)</td>
<td>86.3% (22,281)</td>
</tr>
<tr>
<td>AHEI Score, % (n)</td>
<td>35.8% (9,241)</td>
</tr>
<tr>
<td>Hypertension, % (n)</td>
<td>61.4% (15,863)</td>
</tr>
<tr>
<td>Diabetes, % (n)</td>
<td>24.9% (6,431)</td>
</tr>
<tr>
<td>Myocardial Infarction, % (n)</td>
<td>3.4% (868)</td>
</tr>
<tr>
<td>Angina, % (n)</td>
<td>4.5% (1,159)</td>
</tr>
<tr>
<td>TIA, % (n)</td>
<td>1.4% (349)</td>
</tr>
<tr>
<td>Peripheral Arterial Disease, % (n)</td>
<td>1.1% (295)</td>
</tr>
<tr>
<td>Venous Thromboembolism, % (n)</td>
<td>1.0% (269)</td>
</tr>
<tr>
<td>Atrial Fibrillation, % (n)</td>
<td>3.3% (842)</td>
</tr>
<tr>
<td>Antithrombotic Agent, % (n)</td>
<td>16.3% (4,206)</td>
</tr>
<tr>
<td>Lipid Lowering Agent, % (n)</td>
<td>11.7% (3,019)</td>
</tr>
<tr>
<td>Antihypertensive Agent, % (n)</td>
<td>34.4% (8,897)</td>
</tr>
</tbody>
</table>

AHEI=Alternate Healthy Eating Index, TIA=Transient Ischemic Attack; Antithrombotic agent=use of antiplatelet or anticoagulant; Lipid-lowering agent=use of statin or fibrate; Antihypertensive agent=use of angiotensin converting enzyme inhibitor, angiotensin II receptor blocker, beta blocker, alpha blocker, calcium channel blocker or diuretic
Table 2. Adjusted Association between Alcohol Intake and All Stroke by Region

<table>
<thead>
<tr>
<th>Alcohol History</th>
<th>Overall OR (95% CI)</th>
<th>W Europe & N America OR (95% CI)</th>
<th>Eastern/Central Europe OR (95% CI)</th>
<th>Africa OR (95% CI)</th>
<th>India OR (95% CI)</th>
<th>China OR (95% CI)</th>
<th>SE Asia OR (95% CI)</th>
<th>S America OR (95% CI)</th>
<th>P interim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Drinker</td>
<td>1.00 (Ref)</td>
<td><0.001</td>
</tr>
<tr>
<td>Former Drinker</td>
<td>0.96 (0.87-1.07)</td>
<td>0.77 (0.59-1.01)</td>
<td>0.81 (0.60-1.09)</td>
<td>0.84 (0.56-1.25)</td>
<td>1.13 (0.86-1.48)</td>
<td>0.83 (0.66-1.05)</td>
<td>1.04 (0.68-1.57)</td>
<td>1.07 (0.79-1.44)</td>
<td></td>
</tr>
<tr>
<td>Current Drinker</td>
<td>1.14 (1.04-1.26)</td>
<td>0.65 (0.50-0.86)</td>
<td>0.94 (0.67-1.32)</td>
<td>0.91 (0.62-1.32)</td>
<td>2.19 (1.65-2.92)</td>
<td>1.16 (0.98-1.38)</td>
<td>1.19 (0.71-1.99)</td>
<td>1.36 (1.04-1.78)</td>
<td></td>
</tr>
</tbody>
</table>

Heavy Episodic Drinking									<0.001
Never Drinker	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	
No HED	1.00 (0.92-1.10)	0.71 (0.55-0.91)	0.81 (0.62-1.07)	0.74 (0.52-1.03)	1.54 (1.23-1.94)	0.98 (0.83-1.16)	1.05 (0.70-1.57)	1.13 (0.89-1.44)	
HED	1.39 (1.21-1.59)	0.75 (0.54-1.05)	1.62 (0.94-2.80)	1.92 (1.10-3.33)	1.64 (1.06-2.53)	1.26 (1.00-1.58)	1.50 (0.72-3.12)	2.63 (1.68-4.11)	

Level of Intake									0.037
Never Drinker	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	
Low Intake	0.98 (0.85-1.12)	0.66 (0.45-0.96)	0.64 (0.39-1.05)	0.77 (0.46-1.29)	2.18 (1.42-3.36)	0.82 (0.65-1.05)	0.86 (0.37-2.00)	1.31 (0.89-1.93)	
Moderate Intake	1.22 (1.05-1.43)	0.71 (0.47-1.07)	0.95 (0.54-1.68)	1.15 (0.63-2.09)	2.60 (1.62-4.18)	1.19 (0.91-1.56)	1.42 (0.38-5.26)	1.34 (0.89-2.01)	
High Intake	1.57 (1.31-1.89)	1.05 (0.65-1.7)	0.82 (0.43-1.55)	1.97 (0.90-4.30)	2.03 (1.07-3.87)	1.67 (1.24-2.23)	1.03 (0.35-3.01)	1.58 (0.89-2.79)	

Predominant Alcohol Type									0.053
Never Drinker	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	
Beer or Other	1.21 (1.03-1.44)	0.77 (0.50-1.19)	1.43 (0.63-3.24)	0.99 (0.61-1.63)	2.52 (1.23-5.17)	1.08 (0.78-1.49)	0.80 (0.31-2.06)	1.55 (1.06-2.28)	
Wine	0.88 (0.70-1.12)	0.74 (0.48-1.13)	0.55 (0.29-1.03)	1.28 (0.54-3.05)	0.91 (0.12-6.77)	0.23 (0.08-0.66)	1.26 (0.07-22.6)	1.20 (0.61-2.35)	
Spirit or Arrack	1.23 (1.07-1.41)	0.79 (0.48-1.28)	0.65 (0.39-1.10)	0.85 (0.37-1.97)	2.30 (1.61-3.28)	1.20 (0.97-1.47)	0.97 (0.36-2.62)	1.22 (0.66-2.24)	

Predominant Alcohol Type (also adjusted for heavy episodic drinking pattern and drinks per week)									0.067
Never Drinker	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	1.00 (Ref)	
Beer or Other	0.89 (0.68-1.17)	0.87 (0.47-1.63)	0.46 (0.13-1.57)	0.19 (0.07-0.54)	3.73 (1.34-10.35)	1.20 (0.73-1.98)	0.33 (0.04-2.61)	0.47 (0.22-1.02)	
Wine	0.67 (0.49-0.91)	0.82 (0.45-1.51)	0.23 (0.09-0.59)	0.29 (0.08-1.04)	1.00 (0.11-9.17)	0.25 (0.08-0.78)	0.70 (0.03-15.5)	0.39 (0.15-0.99)	
Spirit or Arrack	0.87 (0.67-1.14)	0.87 (0.45-1.69)	0.22 (0.08-0.62)	0.13 (0.03-0.51)	3.30 (1.48-7.33)	1.24 (0.78-1.98)	0.43 (0.06-3.17)	0.35 (0.14-0.90)	

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Conditional logistic regression adjusted for age, hypertension, smoking, AHEI, physical activity, diabetes, cardiac risk factors, ApoB/ApoA, and stress
Alcohol Intake as a Risk Factor for Acute Stroke: The INTERSTROKE Study
Andrew Smyth, Martin O'Donnell, Sumathy Rangarajan, et al.
Neurology published online October 11, 2022
DOI 10.1212/WNL.0000000000021388

This information is current as of October 11, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/10/11/WNL.0000000000021388.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Case control studies
http://n.neurology.org/cgi/collection/case_control_studies
Infarction
http://n.neurology.org/cgi/collection/infarction
Intracerebral hemorrhage
http://n.neurology.org/cgi/collection/intracerebral_hemorrhage
Risk factors in epidemiology
http://n.neurology.org/cgi/collection/risk_factors_in_epidemiology

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.