Clinical Reasoning: A Young Adult Man With Cognitive Changes, Gait Difficulty, and Renal Insufficiency

Author(s):
Brian Stamm, MD; Rebecca DiBiase, MD, MPH; Glenn Ryan Harris, MD; Hagop Kaprielian, MD; Nupur Brahmbhatt, MD; Allan D Wu, MD; Joshua Baker, DO; Eric M Liotta, MD, MS

Corresponding Author:
Brian Stamm, brian.stamm@northwestern.edu

Affiliation Information for All Authors:
1. Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL; 2. Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL

Equal Author Contribution:
Dr. Joshua Baker & Dr. Eric Liotta contributed equally to this work as senior authors.

Contributions:
Brian Stamm: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Rebecca DiBiase: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Glenn Ryan Harris: Drafting/revision of the manuscript for content, including medical writing for content
Hagop Kaprielian: Drafting/revision of the manuscript for content, including medical writing for content
Nupur Brahmbhatt: Drafting/revision of the manuscript for content, including medical writing for content
Allan D Wu: Drafting/revision of the manuscript for content, including medical writing for content
Joshua Baker: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Eric M Liotta: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
ABSTRACT

A 22-year-old right-handed man with recently diagnosed gout and renal insufficiency presented with three months of progressive gait instability and cognitive changes. He initially presented to an outside institution and underwent a broad workup, but an etiology for his symptoms was not found. On subsequent presentation to our institution, his exam revealed multi-domain cognitive dysfunction, spasticity, hyperreflexia and clonus. A broad workup was again pursued and was notable for an MRI of the brain revealing cortical atrophy advanced for his age, bland cerebrospinal fluid, and a weakly positive serum acetylcholine receptor ganglionic neuronal antibody of unclear significance. The history of gout and inadequately explained renal insufficiency led to a workup for inborn errors of metabolism, including urine amino acid analysis, which revealed a homocysteine peak. This finding prompted further evaluation, revealing markedly elevated serum homocysteine and methylmalonic acid and low methionine. He ultimately developed superficial venous thromboses and a segmental pulmonary embolism, as well as clinical and electrographic seizures. He was initiated on appropriate treatment, and his symptoms markedly improved. The case serves as a reminder to include late-onset inborn errors of metabolism in the differential for young adult patients with onset of neurological, psychiatric, renal, and thromboembolic symptoms.
SECTION 1

A 22-year-old right-handed man with recently diagnosed gout and worsening renal function presented with three months of gait instability and cognitive changes. Approximately five months prior to presentation, he was diagnosed with gout, confirmed by uric acid crystals on synovial fluid. He was recommended to start a vegan diet around that time. He also developed worsening renal function. Until three months prior to presentation, he was a high-functioning student at his university. He then started struggling in classes, stopped interacting with family, going to school and became more introverted. He became clumsier, with difficulty going up and down stairs. He initially presented to an outside hospital, where an extensive workup was performed, but no clear etiology was found, and he was discharged with a diagnosis of catatonia.

Three months after onset of neurological symptoms, the patient presented to our institution with worsened condition. He had recently become violent and started having abnormal movements of his extremities. Two weeks prior, he had stopped walking and required assistance to move. He was urinating on himself and no longer told his parents when he needed to use the bathroom. There was no significant family history. On neurologic exam, mental status exam was notable for prominent inattention, perseveration, psychomotor slowing, and inappropriate laughter. He could not follow multi-step commands and had reduced spontaneous speech with increased latency. Motor exam revealed mild spasticity in the lower greater than upper extremities. Detailed motor and sensory testing were limited by his mental status, but he had at least antigravity strength in the upper and lower extremities bilaterally. His tendon reflexes were 3+ throughout with crossed adductors, and he had bilateral ankle clonus for greater than 10 beats, as well as a positive Hoffman’s reflex on the left.
Questions for consideration:

1. What are the localization and broad categories to consider in the differential diagnosis?
2. What diagnostic studies should be ordered initially?

SECTION 2

The multi-domain cognitive dysfunction suggests diffuse bilateral cerebral hemispheric involvement, whereas the prominent spasticity, hyperreflexia and clonus suggest upper motor neuron involvement, specifically within the corticospinal tracts. The bilateral pyramidal tract dysfunction could be localized intracranially, anywhere from the primary motor cortex to the internal capsule on down to the brainstem. Processes that could lead to such a diffuse, bihemispheric process leading to cognitive symptoms and gait difficulties broadly include: vascular (e.g. CNS vasculitis); infectious and inflammatory (e.g. subacute to chronic meningoencephalitides); neoplastic or paraneoplastic; autoimmune (e.g. autoimmune encephalitis, demyelinating disease); toxic and metabolic (e.g. B12 deficiency leading to subacute combined degeneration); and inborn errors of metabolism, considered initially due to young age and gout history1, as seen in the Table.

Basic laboratory workup revealed SARS-CoV-2 positivity with lymphopenic leukopenia. B12 was 462 pg/mL and folate >20.0 ng/mL. Uric acid was 6.8 mg/dL (2.3-7.6, normal). MRI of the brain with and without contrast revealed cortical atrophy (Figure 1) but no other acute findings, and MRI of the cervical spine (not shown) was unremarkable. Continuous EEG (cEEG) monitoring for 48 hours revealed generalized continuous delta slow activity with superimposed faster frequencies. CSF studies revealed normal cell count, protein, glucose, IgG synthesis rate/index and a negative meningitis panel. Encephalopathy autoimmune serum and CSF panels
were ordered. Given the patient’s age and recent development of gout and renal dysfunction, urine amino acid analysis was sent.

Questions for consideration:

1. Which entities on the differential are less likely, given this initial workup?

 Given the bland CSF and MRI brain without enhancement or FLAIR signal changes, meningoencephalitides, CNS vasculitis, demyelinating diseases, and CNS neoplastic processes are less likely. However, paraneoplastic or autoimmune encephalitis can present without MRI abnormalities. Furthermore, there was a weakly positive serum acetylcholine receptor ganglionic neuronal antibody from the prior institution. While this antibody is classically reported in the setting of autoimmune autonomic ganglionopathy, it has rarely been associated with predominantly neuropsychiatric presentations of autoimmune encephalitis. The patient was empirically initiated on IVIG for this possibility while awaiting other labs. Additionally, inborn errors of metabolism remained high in the differential consideration given the oddity of gout and inadequately explained renal insufficiency. Normal serum vitamin levels did not exclude the possibility of inborn errors of metabolism as they can classically be normal in these conditions.

 The serum and CSF encephalopathy panels returned negative, and the serum NeoComplete Paraneoplastic Evaluation again revealed borderline anti-alpha 3AChR antibody. Notably, the urine amino acid analysis revealed a peak of homocysteine.

Questions for consideration:

1. What is the significance of the homocysteine peak on urine amino acid analysis?
2. What further studies should be ordered?

SECTION 3

Elevated urine homocysteine is classically found in the homocystinurias. This finding prompted a serum homocysteine level, which was >50.0 µmol/L (0-14.9, normal range), with the quantitative serum homocysteine measured at 283.3 µmol/L (6.1-10.8). Serum homocysteine is a key biochemical marker of disruption of the remethylation pathway. When elevated homocysteine is found, serum methionine and quantitative methylmalonic acid (MMA) levels in the serum should be ordered to isolate the defect in the biochemical pathway of cobalamin metabolism. Serum MMA was significantly elevated to 452,000 nmol/L (87-318). Serum methionine was 9 umol/L (16-34). This pattern is the biochemical hallmark of cobalamin C (CblC) deficiency. Genetic testing revealed two heterozygous pathogenic variants in the MMACHC gene: c.328_331del (p.Asn110Aspfs*13) and c.482G>A (p.Arg161Gln).

DISCUSSION

Cobalamin C deficiency is the most common inherited disorder of intracellular cobalamin metabolism. It is most often due to pathogenic variants of the MMACHC gene. As a result of defective gene product, methyl- and adenosylcobalamin are not produced intracellularly. Methyl- and adenosylcobalamin are critical cofactors for the remethylation of homocysteine to methionine and conversion of MMA to succinic acid, respectively (Figure 2). Thus, the deficiency of methyl- and adenosylcobalamin leads to elevated serum homocysteine and MMA, low methionine levels, and normal serum B12 and folate.
CblC disease is typically classified into two forms: early-onset (typically within the first year of life)10 and late-onset (which includes late-onset pediatric and adult cases)11. In the past couple decades, there have been great advancements in newborn screening for cobalamin deficiencies, but many adults were born prior to such screening. The late-onset form was first reported in 197012, and the adult-onset (>=age 18) form in 200113. As of 2022, only forty-five cases of adult-onset CblC disease have been reported, but this is likely a vast under-representation. Whereas early onset disease has a poor prognosis even with early diagnosis, the adult-onset form generally exhibits robust response to treatment. There is a genotype-phenotype correlation with adult-onset forms tending to have compound heterozygosity of missense variants, which leads to some residual protein function,7 as seen in our patient.

In the adult-onset form, neuropathy or myelopathy are the most common clinical signs, followed by ataxia or dysarthria, cognitive decline, psychiatric symptoms, lower limb weakness, and seizures. Other features include thromboembolic disease and kidney failure often due to damage from thrombotic microangiopathy (TMA).7,14 Our patient did ultimately develop acute bilateral upper extremity cephalic vein thromboses, as well as a right lower lobe segmental pulmonary embolism, for which he was initiated on therapeutic anticoagulation. He also had elevated creatinine (peak at 3.6-3.8 mg/dL), but the exact etiology of his renal disease was unclear, and he did not have the other accompanying signs of TMA (no hypertension, hematuria or proteinuria). Kidney biopsy was deferred given it was unlikely to change management and had elevated risks on therapeutic anticoagulation. Additionally, his course was complicated by clinical seizures with left gaze deviation and generalized convulsions. He was reconnected to cEEG which revealed right fronto-central lateralized periodic epileptiform discharges and seizures without definitive clinical correlation and was initiated on antiseizure medications.
Finally, while gout is more commonly associated with inborn errors of metabolism dealing with purine metabolism, it has been reported in cases of methylmalonic acidemia and may be related to decreased renal clearance of uric acid. The treatment for CblC disease is intramuscular or subcutaneous hydroxycobalamin, combined with oral betaine and folic acid. Importantly, oral cobalamin replacement approaches are ineffective as the patients require supplementation with the active form, which is not absorbed via the oral route; betaine facilitates the conversion of homocysteine to methionine; and folic acid can potentially augment remethylation. Our patient was initiated on this regimen soon after the biochemical markers confirmed the diagnosis. He improved significantly while still inpatient and was discharged to an inpatient acute rehabilitation facility. By approximately a month after discharge, he could hold an in-depth follow up conversation over the phone, felt his cognition had significantly improved, and was able to stand and walk for 7-8 meters at a time. This case serves as a reminder to trust the neurologic exam, even if neuroimaging and other workup is unrevealing. Additionally, in complicated cases, red herrings may arise, such as the AChR ganglionic antibody, not considered the pathogenic antibody in this case. Finally, the case reminds one to include the inborn errors of metabolism in the differential for young adult patients with onset of neurological and psychiatric presentations, particularly when accompanied by other systemic findings.
Table. Broad differential diagnosis for diffuse, bi-hemispheric processes leading to cognitive symptoms and gait difficulties

<table>
<thead>
<tr>
<th>Broad diagnostic category</th>
<th>Etiologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular</td>
<td>CNS vasculitis</td>
</tr>
<tr>
<td>Infectious & inflammatory</td>
<td>Subacute/chronic meningoencephalitides, HIV encephalitis, neurosyphilis, neuroborreliosis, neurosarcoaidosis, neuropsychiatric lupus</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Intracranial neoplastic disease or paraneoplastic syndrome</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>Autoimmune encephalitis, demyelinating disease</td>
</tr>
<tr>
<td>Toxic & metabolic, acquired</td>
<td>B12 deficiency, copper deficiency, heavy metal toxicity</td>
</tr>
<tr>
<td>Metabolic, hereditary</td>
<td>Inborn errors of metabolism, e.g. Lesch-Nyhan syndrome, cobalamin C deficiency</td>
</tr>
</tbody>
</table>
Figure 1 Representative neuroimaging from the case. A) Sagittal T1-weighted MRI of the brain and B) axial T2/FLAIR MRI of the brain revealing cortical atrophy; C) continuous video EEG recording sample showing lateralized periodic discharges (black arrows) seen in the right fronto-central region consistent with an area of epileptogenic potential.
Figure 2 Schematic of intracellular cobalamin metabolism. Cobalamin (Cbl) III is bound to transcobalamin (TC) in the blood. This complex is endocytosed into the cell. Upon entering the lysosome, Cbl III becomes unbound from TC. Cbl III then enters the cytosol and undergoes enzymatic reduction from Cbl III to Cbl II aided by MMACHC. Cbl II then undergoes adenosylation to form adenosylcobalamin (AdoCbl) in the mitochondrion and methylation to form methylcobalamin (MeCbl) in the cytosol, respectively. AdoCbl is a cofactor for methylmalonyl-CoA-mutase (MMUT), which catalyzes the conversion of L-Methylmalonyl-CoA (MMA-CoA) to succinyl-CoA. MeCbl is a cofactor in the conversion of homocysteine to methionine, mediated by the enzyme methionine synthase (MTR).
References

Clinical Reasoning: A Young Adult Man With Cognitive Changes, Gait Difficulty, and Renal Insufficiency

Brian Stamm, Rebecca DiBiase, Glenn Ryan Harris, et al.

Neurology published online November 2, 2022
DOI 10.1212/WNL.0000000000201500

This information is current as of November 2, 2022

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/content/early/2022/11/02/WNL.0000000000201500.full</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subspecialty Collections</th>
<th>This article, along with others on similar topics, appears in the following collection(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Clinical Neurology</td>
<td>http://n.neurology.org/cgi/collection/all_clinical_neurology</td>
</tr>
<tr>
<td>All Genetics</td>
<td>http://n.neurology.org/cgi/collection/all_genetics</td>
</tr>
<tr>
<td>All Neuropsychology/Behavior</td>
<td>http://n.neurology.org/cgi/collection/all_neuropsychology_behavior</td>
</tr>
<tr>
<td>All Pediatric</td>
<td>http://n.neurology.org/cgi/collection/all_pediatric</td>
</tr>
<tr>
<td>Metabolic disease (inherited)</td>
<td>http://n.neurology.org/cgi/collection/metabolic_disease_inherited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permissions & Licensing</th>
<th>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reprints</th>
<th>Information about ordering reprints can be found online:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>