Clinical Reasoning: Rapidly Progressive Dementia in a Man With HIV Infection and Undetectable Plasma Viral Load

Author(s):
Lorraine Chishimba Chishimba, MMED¹; Mashina Chomba, MBChB MMed¹; Stanley Zimba, MMED, STP¹,²; Melody Tunsubilege Asukile, MB.ChB, MMed, FC Neurol(SA)¹; Obrie Makai, MMED³; Deanna R. Saylor, MD, MHS¹,²,⁴

Corresponding Author:
Deanna R. Saylor, deanna@jhmi.edu

Affiliation Information for All Authors: 1. Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia; 2. Department of Internal Medicine, University of Zambia School of Medicine, Lusaka Zambia; 3. Department of Internal Medicine, Infectious Diseases Unit, University of Zambia, Lusaka, Zambia; 4. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
ABSTRACT
Neurocognitive decline associated with HIV infection remains prevalent even in the antiretroviral therapy (ART) era, albeit usually in less severe forms. The differential diagnosis of cognitive impairment in this population is quite broad, including infectious causes such as CNS opportunistic infections, causes directly related to HIV such as HIV-associated neurocognitive disorders and causes entirely unrelated to HIV infection such as primary dementia syndromes. In this case, a 47-year old man with HIV and on ART with an undetectable plasma viral load presented with rapidly progressive dementia to a clinic in Zambia. He had been functioning independently and fully employed prior to symptom onset but had to stop working within two months of symptom onset due to the severity and rapidity of his cognitive decline. Initial workup led to an empiric diagnosis and initiation of an empiric treatment regimen which was ultimately ineffective. This prompted re-evaluation, addition workup and, ultimately, discovering the correct diagnosis. This case highlights the stepwise approach to developing a diagnosis in a resource-limited setting where there exists a high burden of HIV infection, including the necessity of empiric diagnoses of treatment plans when investigations are limited and the importance of reconsidering these diagnoses in the face of additional clinical information. In addition, it highlights both infectious and non-infectious causes of cognitive decline in people with HIV.
SECTION 1

A 47-year-old man with HIV on antiretroviral therapy (ART) for 18 years presented to a neurology clinic in Zambia with progressive cognitive decline over two months characterized by memory impairment, inability to recognize friends, tangential speech, wandering, and inability to continue working. He denied other neurologic symptoms. Past medical history was notable for a bulbar urethral stricture. His ART regimen comprised tenofovir, emtricitabine and ritonavir-boosted atazanavir. He had a period of ART non-compliance a year prior but had been compliant for six months. He did not use tobacco, alcohol, or other substances.

Physical examination revealed orientation to person and place only, poor memory in all domains, poor naming and comprehension, psychomotor slowing, and failure to follow complex commands or simple commands without repetition had a positive glabellar sign and hyperreflexia in both legs. Remainder of his neurological examination was normal.

QUESTIONS FOR CONSIDERATION

What is the localization for his presentation?

What is the differential diagnosis?

What investigations can help narrow the diagnosis?

SECTION 2

The patient had rapidly progressive dementia (RPD) given cognitive decline with marked functional impairment within two months(1). Cognitive symptoms and signs without focal deficits suggests a diffuse cerebral process with psychomotor slowing and frontal release signs suggesting frontal lobe involvement.

The differential diagnosis for his presentation is broad. Given his HIV status, HIV-associated neurocognitive disorder (HAND) was considered, as it remains common in the ART era, albeit usually mild. Low CD4 nadir is a risk factor for HAND, but our patient’s CD4 nadir was unknown(2). However, acute progression is unusual for HAND. HIV infection may directly
cause RPD through mechanisms such as HIV encephalitis, CD8+ T-cell encephalitis, and cerebrospinal fluid (CSF) escape and indirectly through central nervous system (CNS) opportunistic infections (1,3). Other causes of RPD, regardless of HIV status, include infectious processes (e.g. viral encephalitis, Creutzfeld-Jacob disease, neurosyphilis), toxic-metabolic processes (e.g. vitamin B12 and B1 deficiencies, metal toxicity, endocrinopathies), autoimmune etiologies (e.g. CNS lupus, autoimmune encephalitis), malignancy (e.g. carcinomatous meningitis, paraneoplastic encephalitis), illicit drug use, and iatrogenic causes (e.g. chemotherapy) (1). The patient had no history of drug use, toxin exposure, endocrinopathies, or metabolic disturbances. Neurodegenerative conditions (e.g. Alzheimer’s disease) were less likely given the acute course (1).

We took a targeted stepwise approach to investigations due to resource limitations and prioritized the most likely diagnoses, starting with infections. Full blood count and metabolic panel were normal. CD4+ T-cell count and plasma HIV viral load (VL) were 522 cells/μL and 54 copies/mL, respectively. Brain MRI showed diffuse T2 white matter hyperintensities with corresponding T1 hypointensities, extending from the brainstem to the hemispheres with no mass effect or diffusion restriction (Figure). CSF studies revealed white cell count 8 cells/mm3 (reference: 0-5), protein 0.92 g/L, (reference: 0.2-0.4), glucose 2.83 mmol/L (reference: 2.2–4.2), and negative Gram stain, cryptococcal antigen, and JC virus (JCV)-PCR. While JCV was not detected, sensitivity of CSF JCV-PCR is typically 60–80% (4). Given the possibility of false negative results and imaging suggestive of PML, a four-week trial of prednisolone was given for a presumptive diagnosis of progressive multifocal leukoencephalopathy (PML) immune reconstitution inflammatory syndrome (IRIS). He improved on steroids, returning to work and interacting normally with family.

Three months later, he returned to clinic with recurrence of and worsening cognitive decline characterized by failure to remember family members, tangential speech, auditory and visual hallucinations, wandering, and intermittent falls. He again required assistance in nearly all activities of daily living. Examination was unchanged except the additional finding of prominent perseveration. CD4 T-cell count and plasma HIV VL were now 288 cells/μL and 212 copies/mL, respectively. The decline in CD4 and corresponding rise in viral load were attributed to intercurrent urinary tract infection. Rapid plasma reagin for syphilis was non-reactive. CSF
analysis showed 7 white blood cells, normal glucose (2.48 mmol/L), and negative cryptococcal antigen, India ink and Gram stain. Due to resource constraints, CSF protein and panels for viral and autoimmune encephalitides were unavailable. However, CSF HIV VL was 27,268 copies/mL.

QUESTIONS FOR CONSIDERATION
1.) What is the most likely diagnosis?
2.) How would you manage this patient?

SECTION 3
Given the significantly elevated CSF HIV VL compared with plasma HIV VL, he was diagnosed with symptomatic CSF discordance syndrome. His ART regimen was changed to dolutegravir, ritonavir-boosted dorunavir, and lamivudine. Three months later, his cognitive symptoms had resolved such that he had returned to work and was at his pre-illness cognitive baseline. Neurological examination was normal. Repeat CSF revealed normal white cell count, protein, and glucose and an undetectable CSF HIV VL.

DISCUSSION
We present a case of RPD in an ART-treated man with HIV and peripheral viral suppression. Cognition improved with steroid treatment for empirically diagnosed PML-IRIS. However, recurrent symptoms prompted further work-up which led to the diagnosis of CSF discordance.

CSF HIV VL is a proxy for independent replication of HIV in brain parenchyma where HIV directly infects neurons, astrocytes and oligodendrocytes but preferentially infects microglia and perivascular macrophages. HIV persists in these cells because they are not susceptible to the cytotoxic mechanisms of T-lymphocytes, and, hence, can become reservoirs for persistent HIV replication(5). While HIV enters the brain within two weeks of primary infection, plasma HIV suppression is generally accompanied by CNS viral suppression in ART-treated individuals(6).
CSF discordance is defined as CSF HIV VL greater than 0.5 or 1log_{10} of plasma HIV VL. CSF escape is defined as any detectable CSF HIV VL when plasma HIV VL is undetectable(7). The exact incidence of CSF escape/discordance is unknown, especially outside high-income countries, and challenging to determine because it’s often asymptomatic, transient and of unclear significance. However, a pooled estimate from high-income countries estimated its prevalence at 7.1% of ART-treated individuals.(8) Risk factors for CSF escape/discordance include low-level plasma viremia, maintenance of the same ART regimen for many years, and, in particular, taking a ritonavir-boosted protease inhibitors (PI) for many years.(8) For example, atazanavir, a PI, and tenofovir, a nucleoside reverse transcriptase inhibitor, have been associated with CSF escape/discordance, likely due to their low concentrations in CSF(9)(10)(11). All of these factors were present in our patient.

Clinical manifestations of CSF escape/discordance vary from asymptomatic to death and its course from acute to subacute. Symptomatic manifestations include meningoencephalitis, psychosis, and personality changes, but progressive cognitive decline is most common. CSF escape/discordance should be suspected when new neurologic symptoms arise in ART-treated patients with well-controlled HIV infection. CSF may have high protein, lymphocytic pleocytosis, and abnormal glucose in the absence of an identified infection while brain MRI may reveal diffuse white matter hyperintensities on T2 and T2-FLAIR sequences(12,13). Of note, CSF discordance/escape can co-occur with CD8+ encephalitis, an inflammatory brain disease characterized by marked infiltration of the cerebrum by CD8+ T-cells that presents with acute or subacute deterioration of cerebral function characterized by headache, confusion and progressive cognitive decline, among other features(9,14).

Treatment of CSF escape/discordance includes optimization of ART regimen with special attention to the possibility of CNS compartmentalization. CNS compartmentalization occurs when CNS viral reservoirs develop mutations unique from circulating plasma HIV strains. (5) If these mutations are ART-resistant, then CNS viral reservoirs become resistant to ART that may still be effectively suppressing plasma virus. In these situations, ART regimens should be optimized based on both CSF and plasma ART resistance profiles to ensure adequate peripheral and CNS viral suppression. Optimization can also be achieved by using ART agents with effective CNS penetration(7). However, no randomized controlled trials exist to support these
practices, and treatment does not always result in immediate symptom resolution as demonstrated in this case.

Our patient improved transiently after steroids, although steroids are not standard treatment for CSF discordance(7,15). While our patient did not have neuropathological confirmation of CD8+ encephalitis (diagnostic gold standard) due to resource limitations, his MRI showed T2 white matter hyperintensities as are reported in CD8+ encephalitis (9). Steroids often improve CD8 encephalitis, so it’s possible our patient had an overlap of CSF discordance and CD8 encephalitis that improved with both steroids and optimization of his ART regimen. Repeat neuroimaging was not performed because the patient improved such that repeat imaging was unlikely to change management and would incur significant costs for the patient.

Importantly, this case highlights challenges of evaluating RPD in settings where resource limitations often preclude a comprehensive initial evaluation. Instead, a stepwise approach based on prevailing local epidemiology is undertaken and empiric treatment often initiated. However, close clinical follow-up and re-evaluation of empiric diagnoses is essential. For example, in retrospect, our patient likely never had PML-IRIS. Close follow-up and critical evaluation of prior presumptive diagnoses, however, enabled correct diagnosis and initiation of appropriate treatment.

Finally, this case highlights the need to evaluate for CSF escape/discordance in people with HIV presenting with cognitive decline, especially in those with well-controlled systemic HIV and in whom CNS opportunistic infections have been excluded. This is especially important as CSF escape/discordance syndromes are treatable but can lead to marked impairment if not promptly diagnosed and treated.
REFERENCES

FIGURE: MRI FLAIR images demonstrating extensive T2/FLAIR white matter changes without mass effect. There was no diffusion restriction or gadolinium enhancement.
Clinical Reasoning: Rapidly Progressive Dementia in a Man With HIV Infection and Undetectable Plasma Viral Load
Lorraine Chishimba Chishimba, Mashina Chomba, Stanley Zimba, et al.
Neurology published online November 8, 2022
DOI 10.1212/WNL.0000000000201576

This information is current as of November 8, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/11/08/WNL.0000000000201576.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
Encephalitis
http://n.neurology.org/cgi/collection/encephalitis
HIV
http://n.neurology.org/cgi/collection/hiv
HIV dementia
http://n.neurology.org/cgi/collection/hiv_dementia
Viral infections
http://n.neurology.org/cgi/collection/viral_infections

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise