Teaching Neuroimage: Reinhold's Hemimedullary Syndrome

Author(s):
PRAVEEN KESAV, MD, DM, PDF^1; Syed Irteza Hussain, MD^2; Seby John, MD^2; Zafar Sajjad, MD^3; Anu Jacob, PhD^1

Corresponding Author:
PRAVEEN KESAV, drpkesav@gmail.com

Affiliation Information for All Authors: 1. Department of Neurology, Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates – 112412; 2. Department of Neurology and Neurointerventional Surgery, Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates - 112412; 3. Department of Neuroradiology, Imaging Sciences and Interventional Radiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates - 112412

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Contributions:
PRAVEEN KESAV: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Syed Irteza Hussain: Drafting/revision of the manuscript for content, including medical writing for content
Seby John: Drafting/revision of the manuscript for content, including medical writing for content
Zafar Sajjad: Major role in the acquisition of data
Anu Jacob: Drafting/revision of the manuscript for content, including medical writing for content

Figure Count:
1

Table Count:
1

Search Terms:

Acknowledgment:

Study Funding:
The authors report no targeted funding

Disclosures:
The authors report no relevant disclosures.

Preprint DOI:

Received Date:
2022-07-27
A 32-year-old male without vascular risk factors presented with acute onset vertigo, swallowing dysfunction and right sided weakness. Physical examination revealed following signs on the left side: Horner’s syndrome, lower motor neuron 9th, 10th, 12th cranial nerve palsies, cerebellar limb ataxia, loss of pain and temperature of face, fine touch and proprioception of face, trunk and limbs. On the right side he had hemiplegia with loss of pain, temperature on the trunk and limbs. MRI Brain revealed acute infarct involving left half of medulla (Figure, A and B). CT Angiogram of head and neck vessels showed occlusion of left vertebral artery V4 segment (Figure, C, D, and E). A diagnosis of Reinhold’s complete hemimedullary syndrome was made (Table). The almost similar incomplete hemimedullary syndrome of Babinski-Nageotte lacks ipsilateral hypoglossal nerve palsy.

Work up for stroke etiology revealed normal glycosylated haemoglobin, lipid profile, negative hypercoagulable, autoimmune and vasculitis panel. Echocardiogram was normal with prolonged cardiac telemetry revealing no cardiac arrhythmias. He was maintained on Acetylsalicylic acid 100 mg once daily and Atorvastatin 40 mg at night time for secondary stroke prophylaxis.

http://links.lww.com/WNL/C515
REFERENCES:

FIGURE:

Classical hemimedullary syndrome of Reinhold: Non-contrast MRI Brain showing hyperintense signal involving the left hemimedulla on diffusion weighted imaging (A; black arrow) with corresponding hypointensity on apparent diffusion coefficient sequences (B; black arrow), suggestive of acute infarct. Coronal section of CT cerebral angiogram demonstrating non-visualization of left vertebral artery V4 segment (C; white arrow) and intact basilar artery flow distally (E; white arrow). Abrupt occlusion of left vertebral artery V4 segment shown on the three-dimensional shaded surface display volume rendering (SS-VRT) reconstructed images (D; white arrow).
<table>
<thead>
<tr>
<th>Stroke Syndrome</th>
<th>Location in medulla</th>
<th>Structures affected</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dejerine’s Syndrome</td>
<td>Medial Medulla</td>
<td>Hypoglossal nerve nucleus
Medial Lemniscus
Pyramidal tract</td>
<td>Ipsilateral
Tongue paralysis
Contralateral
Loss in trunk/limbs of fine touch, proprioception; hemiplegia</td>
</tr>
<tr>
<td>Wallenberg’s Syndrome</td>
<td>Lateral Medulla</td>
<td>Descending tract or nucleus of V nerve
Descending sympathetic fibres
Spinocerebellar fibres/restiform body
Nucleus Ambiguus
Vestibular nucleus
Lateral Spinothalamic tract</td>
<td>Ipsilateral
Loss of pain, temperature – face
HORNER’S SYNDROME
Ataxia/Dysmetria
9th, 10th cranial nerve palsies
Contralateral
Loss of pain, temperature (trunk/limbs)
Nystagmus</td>
</tr>
<tr>
<td>Babinski-Nageotte’s Syndrome</td>
<td>Lateral Medulla with ventral extension</td>
<td>All components of Wallenberg’s syndrome with involvement of pyramidal tract</td>
<td>All components of Wallenberg’s syndrome with contralateral hemiplegia</td>
</tr>
<tr>
<td>Cestan-Chenais’s Syndrome</td>
<td>Lateral Medulla with ventral extension</td>
<td>All components of Wallenberg’s syndrome except spinocerebellar fibres/restiform body, but with involvement of pyramidal tract</td>
<td>All components of Wallenberg’s syndrome except ipsilateral cerebellar ataxia but with contralateral hemiplegia</td>
</tr>
<tr>
<td>Reinhold’s Syndrome</td>
<td>Hemimedulla</td>
<td>All components of Dejerine’s and Wallenberg’s syndrome</td>
<td>All components of Dejerine’s and Wallenberg’s syndrome</td>
</tr>
</tbody>
</table>

TABLE – Description of the Medullary Vascular Syndromes
Teaching Neuroimage: Reinhold's Hemimedullary Syndrome
PRAVEEN KESAV, Syed Irteza Hussain, Seby John, et al.
Neurology published online December 2, 2022
DOI 10.1212/WNL.0000000000201686

This information is current as of December 2, 2022

Updated Information & Services
Updated Information & Services including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/12/02/WNL.0000000000201686.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Infarction
http://n.neurology.org/cgi/collection/infarction
MRI
http://n.neurology.org/cgi/collection/mri
Stroke in young adults
http://n.neurology.org/cgi/collection/stroke_in_young_adults

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise