NEXMIF Epilepsy: An Alternative Cause of Progressive Myoclonus

Author(s):
Lauren E Chorny, DO¹; Douglas R Nordli III, MD²; Fernando Galan, MD³

Corresponding Author:
Lauren E Chorny, lauren.chorny@jax.ufl.edu

Affiliation Information for All Authors: 1. Department of Pediatrics, University of Florida College of Medicine, Jacksonville, Florida, USA; 2. Department of Child and Adolescent Neurology, Mayo Clinic College of Medicine and Health Sciences, Jacksonville, Florida, USA; 3. Department of Child and Adolescent Neurology, Nemours Children’s Health, Jacksonville, Florida, USA

Equal Author Contribution:

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes. Videos, if applicable, will be available when the article is published in its final form.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Case Summary

An 8 year old boy with generalized myoclonic epilepsy followed by progressive cognitive decline presented with worsening myoclonus despite being compliant with prescribed clobazam. The movements (Video 1) in conjunction with a worsening cognitive status over time were concerning for a progressive myoclonic epilepsy. Initial EEG captured frequent myoclonic seizures time-locked with spike-wave activity (Figure). Overnight EEG revealed normal sleep architecture. His seizures stopped with valproic acid load. Genetic testing revealed a heterozygous pathogenic variant in NEXMIF (c.2478_2479dup), which is associated with NEXMIF encephalopathy. NEXMIF encephalopathy is characterized by mild to severe intellectual disability and includes myoclonic seizures, absence seizures and atonic seizures.

Traditionally, the differential diagnosis of progressive myoclonic epilepsy entails diseases such as Lafora body disease, Unverricht-Lundbord disease, NCL, Type 1 Sialidosis and MERRF.

This case emphasizes the consideration of NEXMIF mutations in the differential diagnosis of a suspected progressive myoclonic epilepsy.

Figure Legends

Video 1:
Video of myoclonus.

Figure:
Longitudinal bipolar montage EEG with diffuse spike wave associated with myoclonus.
References:
NEXMIF Epilepsy: An Alternative Cause of Progressive Myoclonus
Lauren E Chorny, Douglas R Nordli III and Fernando Galan
Neurology published online December 19, 2022
DOI 10.1212/WNL.0000000000201722

This information is current as of December 19, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/12/19/WNL.0000000000201722.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Myoclonus; see Movement Disorders/myoclonus
http://n.neurology.org/cgi/collection/myoclonus_see_movement_disorders-myoclonus

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.