Pearls & Oy-sters: Late-Onset Cobalamin C Deficiency Presenting With Subacute Combined Degeneration

Author(s):
Christopher Goyne, MD; Leena Kansal, MD

Corresponding Author:
Christopher Goyne, chris.goyne@gmail.com

Affiliation Information for All Authors: 1. University of California San Diego

Published Ahead of Print on December 21, 2022 as 10.1212/WNL.0000000000201695

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Contributions:
Christopher Goyne: Drafting/revision of the manuscript for content, including medical writing for content
Leena Kansal: Drafting/revision of the manuscript for content, including medical writing for content

Figure Count:
2

Table Count:
0

Search Terms:

Acknowledgment:

Study Funding:
The authors report no targeted funding

Disclosures:
The authors C. Goyne and L. Kansal report no disclosures relevant to the manuscript.

Preprint DOI:

Received Date:
2021-10-21

Accepted Date:
2022-11-01

Handling Editor Statement:
Submitted and externally peer reviewed. The handling editor was Roy Strowd III, MD, Med, MS.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Pearls

- Cobalamin C (CblC) deficiency is a rare cause of myelopathy in adults.
- CblC deficiency can present with a range of neurologic, psychiatric, and systemic symptoms.
- CblC deficiency is treatable and early diagnosis can help prevent permanent neurologic damage.

Oy-sters

- Testing solely for vitamin B12 without methylmalonic acid (MMA) and homocysteine will miss inborn errors in metabolism such as CblC deficiency.

Abstract

Cobalamin C (CblC) deficiency is a rare inborn error in cobalamin (vitamin B12) metabolism which results in impaired intracellular processing of dietary vitamin B12. This leads to a wide range of clinical manifestations including cognitive impairment, psychiatric symptoms, myelopathy, thrombotic events, glomerulonephritis, and pulmonary arterial hypertension. CblC deficiency typically presents in the pediatric population but can also present in adulthood. Diagnosis in adults can be challenging due to the rarity of this condition and its myriad clinical presentations. CblC deficiency is treatable, so early diagnosis is important in preventing permanent neurologic damage. While CblC deficiency results from a defect in vitamin B12 metabolism, B12 levels remain normal. Diagnosis depends on testing metabolites altered by vitamin B12 dysfunction such as methylmalonic acid (MMA) and homocysteine. We present a case of a 20-year-old female who presented with chronic progressive lower extremity weakness and sensory changes. She was eventually diagnosed with subacute combined degeneration due to CblC deficiency and effectively treated. This case highlights the importance of considering inborn errors of metabolism in adult patients and including testing of metabolites such as MMA and homocysteine when suspecting vitamin B12 dysfunction.

Case Report

A previously healthy 20-year-old female presented with nine months of gradually progressive lower extremity weakness and numbness. Her symptoms began insidiously with mild leg weakness manifesting as intermittent knee buckling and difficulty getting up from chairs. Several months later she developed lower extremity numbness and paresthesias. Her weakness gradually progressed until she was unable to ambulate without assistance. Throughout this course, she denied upper extremity symptoms, cognitive changes, psychiatric symptoms, vision problems, blood clots, or bladder/bowel dysfunction. There was no identifiable illness, vaccination, or physiologic stressors prior to symptom onset. She denied dietary restrictions (e.g., veganism) or recreational drug use including nitrous oxide. There was no family history of consanguinity or neurologic disorders. She was up to date on vaccinations and her newborn screen was normal at birth.

She was initially seen by a neurologist. At that time her examination revealed normal cognition, intact cranial nerves, normal fundi, and normal upper extremity strength. Her lower extremities were diffusely weak with 4/5 strength throughout. Upper extremity reflexes were normal; there was areflexia at the patella and clonus at the ankles bilaterally. Her sensory exam demonstrated decreased vibratory
sensation and proprioception in her legs bilaterally. Temperature and pinprick sensation was spared. Gait was wide-based, and she required a walker for ambulation. MRI of the cervical and thoracic spine demonstrated longitudinally extensive T2 hyperintensities involving the dorsal columns extending from C5 to T11 (Figure 1). EMG showed active denervation in multiple myotomes. Her MRI brain (Figure 2) and laboratory work up were unremarkable, including normal vitamin B12 (625 pg/ml, reference range 232 – 1,245 pg/ml), negative aquaporin 4 (AQP4 Ab), and negative myelin oligodendrocyte glycoprotein (anti MOG Ab) antibodies. MMA and homocysteine were not tested at this time.

She was referred to a tertiary care center for further evaluation. Lumbar puncture was performed which revealed a normal cerebrospinal fluid (CSF) profile, negative oligoclonal bands, and negative meningoencephalitis panel. Serum studies for infectious pathogens were negative, including HIV, HTLV/II, syphilis, and tuberculosis. Rheumatologic studies were normal, including CRP, ESR, ANA, ANCA, RF, SSA, and SS8. Initial nutritional studies were unremarkable, including vitamin B12 (765 pg/ml), folate, copper, and alpha tocopherol. However, MMA and total homocysteine eventually returned elevated at 85.23 umol/L (reference range 0.0 - 0.40 umol/L) and 165 umol/L (reference range 0 - 14 umol/L), respectively. This raised suspicion for an inborn error in metabolism, so the patient was empirically started on treatment for CblC deficiency with hydroxocobalamin 5mg IM daily, betaine 1g three times daily, folic acid 15mg twice daily, and levocarnitine 660mg three times daily. Genetic testing confirmed compound heterozygous mutations in the MMACHC gene, c271dupA (pathologic) and c449T>A (variant of unknown significance). Her parents received genetic testing, which confirmed that each carried one mutant allele. She was diagnosed with subacute combined degeneration due to CblC deficiency. On follow up five months after initiating treatment she was fully ambulatory with only trace hip flexor weakness and mild loss of vibratory sensation bilaterally.

Discussion:

CblC deficiency is an inborn error in vitamin B12 metabolism that can present with a wide range of neurologic symptoms including myelopathy. While the condition is rare, it is important to recognize because it is readily treatable. This case illustrates the importance of considering inborn errors in metabolism, such as CblC deficiency, in adults and including MMA and homocysteine as part of the evaluation when vitamin B12 deficiency is suspected.

CblC deficiency, also known as combined methylmalonic acidemia and homocystinuria (CblC type), is a rare inborn error in cobalamin (vitamin B12) metabolism caused by an autosomal recessive mutation in the MMACHC gene on chromosome 1p34.1 (1). The gene product, MMACHC (CblC), acts as a molecular chaperone and catalyzes the reduction of dietary B12 into a form that can be used to synthesize functional coenzymes (1). A defect in MMACHC leads to impaired intracellular conversion of dietary B12 into adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl). Absence of these cofactors leads to impaired enzymatic function of methylmalonyl-CoA mutase and methionine synthase, which participate in methylmalonic acid (MMA) degradation and remethylation of homocysteine to methionine respectively (2). This leads to increased levels of MMA and homocysteine, decreased levels of methionine, and subsequent systemic dysfunction (1).

Over 90% of patients with CblC deficiency present in infancy with failure to thrive, developmental delay, hypotonia, and seizures (2). Some patients present outside of infancy (>12 months) and are referred to
as having late-onset CblC deficiency (2). These patients can present in adulthood with a wide range of manifestations including cognitive impairment, psychiatric symptoms, myelopathy, thrombotic events, glomerulonephritis, and pulmonary arterial hypertension (2, 3, 4). The disease severity and age of onset depend on the underlying MMACHC mutation. However, clinical presentation in late-onset disease is highly variable within the same mutation (3). The mutations c271dupA and c331C>T are associated with more severe, early-onset disease in the homozygous or compound heterozygous state (5). Late-onset disease is associated with the mutations c394C>T and c482G>A, which manifest with late-onset disease even in the compound heterozygous state with a more deleterious mutation like c271dupA (5, 6).

Multiple other less common mutations have also been described but are outside the scope of this paper (5). Our patient was compound heterozygous for c271dupA and a second previously undescribed mutation, c449T>A (pIle150Lys). This latter mutation encodes for a charged amino acid (lysine) in place of a nonpolar amino acid (isoleucine). This is a significant change in amino acid character which could alter protein function. Since CblC is an autosomal recessive disorder, it can be inferred that the mutation c449T>A is pathologic and corresponds to a late-onset phenotype given our patient’s late presentation in a compound heterozygous state with c271dupA.

CblC deficiency has been part of the newborn screen in the United States since the early 2000s and was introduced in California in 2005 (7, 8). Based on our patient’s age she would not have been screened at birth. Newborn screening has aided in the early detection and treatment of many individuals with this condition (7). Early treatment improves survival and prevents many serious complications such as hemolytic uremic syndrome and hematologic abnormalities. However, individuals with early-onset disease tend to develop cognitive impairment and vision loss regardless of treatment (5). Late-onset cases tend to do better and can have complete resolution of deficits with treatment (5). Despite the success of newborn screening, it is unclear if current screening methods are sensitive for milder forms of CblC deficiency as there are several reports of cases missed by the newborn screen (6, 9).

Myelopathy is a common presentation of late-onset CblC deficiency. Huemer et al identified myelopathy in 12 of 58 of their cases and Wang et al identified myelopathy in all 16 of their cases (2, 3). Our patient presented with isolated subacute combined degeneration and peripheral neuropathy. Initially vitamin B12 deficiency was suspected given the history and imaging findings. However, during the initial encounter vitamin B12 was checked in isolation without MMA or homocysteine. This led to the premature conclusion that vitamin B12 dysfunction was not present, and ultimately delayed diagnosis. Only after MMA and homocysteine were checked was a defect in vitamin B12 metabolism identified. This illustrates the importance of including CblC deficiency in the differential of myelopathy and testing for MMA and homocysteine when vitamin B12 deficiency is suspected.

Our patient was treated with hydroxocobalamin, betaine, and folinic acid with improvement in her symptoms. Current guidelines recommend starting parenteral hydroxocobalamin and oral betaine as soon as there is suspicion of CblC deficiency (1, 5). Hydroxocobalamin is given intramuscularly (IM) at a starting dose of either 1mg or 0.3mg/kg daily (1, 5). The formulation is important since parenteral hydroxocobalamin has been shown to be more effective than oral cyanocobalamin (1, 5). Betaine is started orally at 250mg/kg/day divided thrice daily (1, 5). Both hydroxocobalamin and betaine have clinically proven efficacy. Folinic acid, methionine, and L-carnitine lack strong evidence and are recommended on theoretical principles (1, 5). Treatment is adjusted to target vitamin B12 levels above 1,000,000 pg/ml, normalization of methionine, and reduction in MMA and total homocysteine (1). There are limited guidelines for long term surveillance, but it is common to monitor vitamin B12, MMA, total
homocysteine, renal function, and hematologic parameters (5). All patients with CblC deficiency should be seen by an ophthalmologist at time of diagnosis regardless of symptoms (5). Patients should be counseled to avoid protein restriction and nitrous oxide exposure, such as with dental anesthesia (5). Outcomes are variable, ranging from complete recovery to death, and depend in part on the genetic profile and duration of untreated disease. Patients with late-onset disease tend to do better and can have significant improvement if treated early (1, 5).

References:

Figure 1: Axial T2 MRI demonstrating hyperintensity in the dorsal columns (A), Sagittal STIR MRI demonstrating longitudinal extension of the lesion (B)

Figure 2: Axial FLAIR MRI demonstrating normal volume and architecture (A, B)
Pearls & Oysters: Late-Onset Cobalamin C Deficiency Presenting With Subacute Combined Degeneration

Christopher Goyne and Leena Kansal

Neurology published online December 21, 2022

DOI 10.1212/WNL.00000000000201695

This information is current as of December 21, 2022

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://n.neurology.org/content/early/2022/12/21/WNL.00000000000201695.full</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subspecialty Collections</th>
<th>This article, along with others on similar topics, appears in the following collection(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Genetics</td>
<td>http://n.neurology.org/cgi/collection/all_genetics</td>
</tr>
<tr>
<td>All Spinal Cord</td>
<td>http://n.neurology.org/cgi/collection/all_spinal_cord</td>
</tr>
<tr>
<td>Leukodystrophies</td>
<td>http://n.neurology.org/cgi/collection/leukodystrophies</td>
</tr>
<tr>
<td>Metabolic disease (inherited)</td>
<td>http://n.neurology.org/cgi/collection/metabolic_disease_inherited</td>
</tr>
<tr>
<td>Transverse myelitis</td>
<td>http://n.neurology.org/cgi/collection/transverse_myelitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permissions & Licensing</th>
<th>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reprints</th>
<th>Information about ordering reprints can be found online:</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://n.neurology.org/subscribers/advertise</td>
<td></td>
</tr>
</tbody>
</table>