Teaching Neurolmage: ROBO3 Mutation Causing Horizontal Gaze Palsy and Brainstem Malformation

Author(s): Geetha Chanda, MD Pediatrics; Nihaal Reddy, MD; Ramesh Konanki, MD, DM; Eugen Boltshauser, MD; Lokesh Lingappa, MD, DM

Corresponding Author: Geetha Chanda, dr.geethachanda@gmail.com

Affiliation Information for All Authors: 1. Department of Pediatric Neurology, Rainbow Childrens Hospital, Hyderabad, India; 2. Rainbow Childrens Hospital, Hyderabad, India; 3. Department of Pediatric Neurology, Rainbow Childrens Hospital, Hyderabad, India; 4. Eugen Boltshauser, Department of Pediatric Neurology, University Childrens Hospital, Zurich; 5. Department of Pediatric Neurology, Rainbow Childrens Hospital, Hyderabad, India

Equal Author Contribution: All authors have contributed equally to this work.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Contributions:
Geetha Chanda: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Nihaal Reddy: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Ramesh Konanki: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Eugen Boltshauser: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Lokesh Lingappa: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data

Figure Count:
1

Table Count:
0

Search Terms:
[187] Ocular motility, Robo3 split pons, hindbrain abnormality, horizontal gaze palsy, progressive scoliosis

Acknowledgment:

Study Funding:
The authors report no targeted funding

Disclosures:
The authors report no disclosures relevant to the manuscript.

Preprint DOI:

Received Date:
2022-08-10

Accepted Date:
2022-12-02

Handling Editor Statement:
Submitted and externally peer reviewed. The handling editor was Resident and Fellow Deputy Ariel Lyons-Warren, MD, PhD.
A 10-month-old boy presented with motor developmental delay, torticollis, bilateral abduction restriction (incomplete horizontal gaze palsy), and left lower motor neuron facial palsy. His brain MRI demonstrated brainstem malformations, including absent facial colliculi (Figure, A), clefting of the medulla and pons (Figure, B), butterfly configuration of the medulla (Figure, C), and concave dorsal pontine border (Figure, D). Genetic testing revealed a homozygous missense mutation [c.437G>C (p.Arg146Pro)] in exon 2 of ROBO3 gene. Horizontal gaze palsy with progressive scoliosis (HGPPS1) results from axonal guidance signalling defects caused by ROBO3 mutations. The main symptoms include congenital horizontal gaze palsy, horizontal pendular nystagmus, and progressive scoliosis after two years of age. The radiological differential for this hindbrain malformation is ‘horizontal gaze palsy with progressive scoliosis-2’, caused by mutation in the DCC gene. Children with HGPPS2 also demonstrate intellectual impairment and agenesis of the corpus callosum.

http://links.lww.com/WNL/C576

References:

Figure- Imaging findings of ROBO3 mutation

Legend- Fig 1. High resolution heavily weighted T2 (CISS) axial images demonstrate (A) absent facial colliculi (arrowhead), (B) Dorsal pontine cleft generating the split pons sign (arrowhead), (C) Butterfly configuration of medulla. T2 sagittal image demonstrates (D) pontine hypoplasia (dashed arrow), concave dorsal pontine border (arrowhead), and normal corpus callosum.
Teaching_NeuroImage: ROBO3 Mutation Causing Horizontal Gaze Palsy and Brainstem Malformation

Geetha Chanda, Nihaal Reddy, Ramesh Konanki, et al.

Neurology published online December 23, 2022

DOI 10.1212/WNL.0000000000206821

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>including high resolution figures, can be found at:</td>
<td>http://n.neurology.org/content/early/2022/12/22/WNL.0000000000206821.citation.full</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subspecialty Collections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
<td>Ocular motility http://n.neurology.org/cgi/collection/ocular_motility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permissions & Licensing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reprints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about ordering reprints can be found online:</td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>