Teaching Video NeurolImage: Reverse Ocular Bobbing as a Presenting Feature of Brainstem Cavernoma

Author(s):
Kavindra Singh, MBBS, MS, MCh; Pravin Salunke, MBBS, MS, MCh

Corresponding Author:
Kavindra Singh, singh.kavindra8@gmail.com

Affiliation Information for All Authors: 1. Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India; 2. Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India

Equal Author Contribution:
All authors contributed equally to this work.

Contributions:
Kavindra Singh: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Pravin Salunke: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
A 21 year-old male presented with oscilopsia, repetitive eye blinking and headache for 20 days. He had intact vision with normal pupillary reaction. Although the horizontal and vertical gazes were intact, there were abnormal conjugate vertical movements with quick up phase followed by slow return to midposition suggestive of reverse ocular bobbing (video 1). Bobbing was present in all directions of gaze and was associated with synkinetic lid movements. Imaging suggested a dorsal pontine cavernoma (Figure). The patient opted for radiosurgery. Omnipause neurons in dorsal pons tonically inhibit the riMLF burst neurons (centre for vertical saccades) which also indirectly stimulates levator subnucleus. Damage to omnipause neurons or connections may cause reverse ocular bobbing with synkinetic lid movements. Unlike ocular bobbing, the horizontal gaze is intact due to uninvolved PPRF. Interestingly, reverse ocular bobbing has been previously reported in cases of metabolic encephalopathy, but is rarely associated with a structural lesion.
References:


Figure 1- Showing axial and sagittal MRI images delineating a dorsal pontine cavernoma

**Figure A**- T1 weighted axial MRI sequence showing a hypointense lesion in dorsal pons (marked with black arrow)

**Figure B**- T1W+C sagittal MRI sequence depicting a lesion (marked with black arrow) with faint contrast enhancement at dorsal pontomesencephalic junction. Red star represents riMLF, which has the excitatory burst neurons for vertical saccades and blue circle at dorsal pons approximates location of omnipause cells lying in the nucleus raphe interpositus, which is located in the midline at the level of abducens nucleus. The connections between riMLF and omnipause neurons are damaged leading to reverse bobbing

[Images of MRI sequences]

Video- Video demonstrating intact gaze in all directions with synchronised upward movement followed by return to mid-position associated with lid synkinesis.
Teaching Video NeuroImage: Reverse Ocular Bobbing as a Presenting Feature of Brainstem Cavernoma
Kavindra Singh and Pravin Salunke
Neurology published online December 29, 2022
DOI 10.1212/WNL.00000000000206756

This information is current as of December 29, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/12/29/WNL.00000000000206756.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Education
http://n.neurology.org/cgi/collection/all_education
All Neuro-ophthalmology
http://n.neurology.org/cgi/collection/all_neuroophthalmology
Ocular motility
http://n.neurology.org/cgi/collection/ocular_motility
Oscillopsia
http://n.neurology.org/cgi/collection/oscillopsia

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise