Clinical Reasoning: A 67-Year-Old Man With Multiple Intracranial Lesions

Author(s):
Angeline Ngo, MD\(^1\); Kevin McGehrin, MD\(^1\); Christina Di Loreto, MD\(^2\); Rajan Arora, MD\(^3\); Jamie Nicole LaBuzetta, MD, MSc, MPhil\(^1\)

Corresponding Author:
Angeline Ngo, ann011@health.ucsd.edu

Affiliation Information for All Authors: 1. Department of Neurosciences, University of California San Diego, San Diego, CA; 2. Office of the Coroner Ada County, Boise, Idaho; 3. Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA

Equal Author Contribution:

Contributions:
Angeline Ngo: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Kevin McGehrin: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design
Christina Di Loreto: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Rajan Arora: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Jamie Nicole LaBuzetta: Drafting/revision of the manuscript for content, including medical writing for content

Figure Count: 2
Abstract
A wide variety of diseases present with intracranial lesions. In this case report, a 67-year-old man initially presented to an outside hospital with nausea, headache, and ataxia and was found to have multiple intracranial lesions. Diagnostic workup was ultimately unrevealing, and his condition improved after a course of steroids and antibiotics. Unfortunately, symptoms returned three months later. MRI brain revealed progression of his intracranial lesions. This case highlights a diagnostic approach and general management strategy for patients presenting with undifferentiated intracranial pathology. A final diagnosis is ultimately reached and raises further discussion.
Section 1
A 67-year-old Hispanic man presented with two weeks of headache, dizziness, nausea, vomiting, and ataxia. He had similar symptoms five months earlier, at which time he was admitted to an outside hospital. Prior MRI brain revealed contrast-enhancing lesions in his occipital cortex and cerebellum, and biopsy showed lymphocytic microvasculitis, though ultimately non-diagnostic. Broad infectious work-up, including CSF studies, was negative. After a course of steroids and broad-spectrum antibiotics, including vancomycin, cefepime, and metronidazole, his symptoms had improved over two months. He was able to return to his occupation as a ranch manager, which included training horses. Unfortunately, he was lost to follow-up due to a lack of health insurance until his symptoms returned three months later, at which time he was admitted to our hospital. Exam showed a right monocular abduction defect and dense right homonymous hemianopsia.

Questions:
1. Where do the presentation and exam localize?
2. What is the differential diagnosis?
3. What testing should be completed?

Section 2
The presentation and exam localize to multiple areas within the CNS. The right homonymous hemianopsia localizes anywhere along the left optic tract, lateral geniculate nucleus, parietotemporal optic radiations, or calcarine fissure. The right lateral ophthalmoparesis is suggestive of a peripheral right CN VI nerve palsy, either from a pontine lesion or from elevated ICP causing downward traction on the nerve. Dizziness and ataxia localize to the cerebellum or brainstem.

The main differential categories for multifocal, contrast-enhancing intracranial lesions are infectious and neoplastic, but vascular, autoimmune, and inflammatory diagnoses should also be considered. Possible infectious agents include bacteria, viruses, fungi, and parasites. Zoonotic illnesses should be considered given this patient’s occupational exposures as a ranch manager. Chronic infections include Tuberculosis, Brucella, JC virus, HIV, Cryptococcus, Toxoplasma, Neurocysticercosis, Echinococcus and Lyme.

Malignant etiologies that can relapse include primary tumors, particularly CNS lymphoma, and metastatic brain cancers. Although this patient’s age is atypical for autoimmune and inflammatory disorders, tumefactive demyelinating diseases, Behcet’s disease, lupus, and neuro-sarcoidosis can present as discrete, relapsing CNS lesions. Vasculitis, including CNS primary angiitis, can also present with recurring mass-like lesions.

MRI brain with contrast is an important initial test. HIV status is crucial to determining immunocompetency and refining the differential. The patient’s prior tests were equivocal, so lumbar puncture should be repeated. CSF studies should include infectious panels, cytology, and flow cytometry. Repeat brain biopsy will be necessary if CSF studies are unrevealing. Additional studies include angiography for vasculitis and MRI spine for clinically silent cord lesions. Malignancy scans should include chest, abdomen, and pelvis.

Results
Imaging:
MRI brain showed interval enlargement of known occipital and cerebellar lesions, as well as new enhancing pontine lesions (Figure 1). MRI spine showed no abnormal cord enhancement. MR angiography showed no evidence of vasculitis. There was no evidence of primary malignancy on CT body scans or testicular ultrasound.
CSF:
Opening pressure 34 cm H₂O. 300 white blood cells (77% lymphocytes, 2% neutrophils, 21% macrophages). 3 red blood cells. 99 mg/dL glucose. 211 mg/dL protein. Gram stain negative. Bacterial, fungal, and acid-fast cultures pending. Bacterial/viral/yeast panel (eTable 1) and JC Virus polymerase chain reaction (PCR) negative. Cryptococcal antigen test negative. Angiotensin-converting enzyme (ACE) 8 U/L. Venereal disease research laboratory (VDRL) negative. Cytology and Flow Cytometry results pending.

Serum:
HIV non-reactive, Rapid plasma reagin negative, antinuclear antibodies positive/titer negative, antineutrophil cytoplasmic antibodies negative, ACE negative, Coccidiomycosis screen negative, QuantiFERON-gold negative.

Questions:
1. What are the next steps in management?
2. What are some considerations prior to starting empiric treatment?

Section 3
The patient exhibited signs of elevated ICP including headache, vomiting, and CN VI palsy. At high risk for acute decompensation and herniation, he warranted close monitoring. Clinical symptoms that indicate an emergent ICP crisis are depressed mental status, irregular breathing, and fixed pupils. In this situation, airway protection must be considered along with other interventions including elevating the head of bed, brief hyperventilation, and hyperosmotic therapies. High-potency glucocorticoids can be used to treat vasogenic edema. Dexamethasone acts in astrocytes and pericytes to upregulate angiopoietin-1, a blood-brain barrier-stabilizing factor, and downregulate vascular endothelial growth factor, a permeabilizing factor. The decrease in edema can contribute to a decrease in ICP over time. However, steroids should be ideally deferred until a brain biopsy can be repeated, as steroids may decrease sample yield given the possibility of lymphoma or demyelinating disease. The patient received a short course of dexamethasone. Antibiotics were not administered due to high concern for malignancy.

While pending results and biopsy, the patient developed worsened cerebral edema and hydrocephalus and quickly decompensated. Within nine days of admission, he experienced a clinical herniation event and died. Brain autopsy was performed (Figure 2).

Question:
1. What is the final diagnosis?

Section 4
The diagnosis is amoebic meningoencephalitis, an exceedingly rare infectious encephalitis caused by the free-living protozoa, amoeba. Two distinctive clinical amoebic syndromes exist: 1) Primary Amoebic Meningoencephalitis (PAM), an acute hemorrhagic meningoencephalitis caused by Naegleria fowleri; and 2) Granulomatous Amoebic Encephalitis (GAE), a subacute-chronic infection caused by Acanthamoeba and Balamuthia mandrillaris.

Discussion
Balamuthia was first isolated in 1986 from brain tissue of a mandrill that died of a necrotizing hemorrhagic encephalitis at the San Diego Wild Animal Park. The first human cases were discovered in 1991, and since then more than 200 cases of Balamuthia infection have been diagnosed worldwide, with at least 100 in the United States.
Naegleria is found in warm freshwater and transmitted through inhalation of infested water.\(^5\) Balamuthia enters through inhalation or direct contact of open wounds with contaminated soil or dust. Once infected, Balamuthia and Acanthamoeba spread to the CNS hematogenously.\(^7\) Naegleria and Balamuthia are known to cause disease in healthy humans, and a predominance of reported cases were men in southern and southwestern states, respectively.\(^6,\^8\) This demographic matched our patient, a Hispanic male in southern California. Acanthamoeba, in contrast, is found throughout the natural environment and causes opportunistic infection in immunocompromised hosts. The incubation period for Naegleria averages five days, while incubation of Balamuthia and Acanthamoeba can last weeks to months.\(^7\) Patients often present with headaches, meningismus, seizures, and lethargy. Symptoms are initially mild but invariably worsen over weeks to months, with a case fatality rate greater than 95\%.\(^5\)

Given its rarity and non-specific symptoms, diagnosis of amoebic encephalitis is challenging and often made post-mortem. Brain MRI commonly reveals multi-focal enhancing and sometimes cystic lesions with hydrocephalus.\(^9\) Definitive diagnosis of amoebic encephalitis is established by detection of amoeba in brain tissue or CSF.

Available diagnostic techniques include culture, wet mount microscopy, serology, immunocytochemistry, and electron microscopy. In contrast to the necrotizing, hemorrhagic, fibropurulent meningoencephalitis of Naegleria or the granulomatous inflammation of Acanthamoeba, histological findings of Balamuthia infection may vary between the two, showing hemorrhage, necrosis, and inflammation with or without granulomas.\(^10\) Electron microscopy demonstrates triple-walled cysts.\(^10\) Another feature of Balamuthia is typically high concentration and specificity of serum antibodies, allowing for non-invasive detection via immunofluorescent antibody staining\(^11\). Newer diagnostic tools include molecular analysis of CSF and tissue using metagenomic next-generation sequencing or real-time PCR.\(^10\) Unfortunately, effective utilization of these techniques, such as in this case, is often precluded by the delay in diagnostic consideration, rapid disease progression, and resource accessibility.

There are currently no standardized treatments for amoebic encephalitis due to the rarity of cases diagnosed pre-mortem and limited clinical data. Multi-drug regimens for the few survivors have included amphotericin B, rifampin, fluconazole, miltefosine, and azithromycin; amphotericin B particularly has demonstrated in vitro activity against Naegleria.\(^12,\^13\)

Following his first hospitalization, this patient’s condition had improved for a couple months before worsening, which is unusual for amoebic encephalitis. Though unclear why, his improvement could possibly be attributed to effective activity of the broad-spectrum antibiotics against Balamuthia and a subacute to chronic dissemination of disease. Unfortunately, the disease ultimately progressed and proved fatal prior to diagnosis and any potential targeted treatment.

Many cases of amoebic encephalitis likely go unrecognized, as most providers are unfamiliar with the disease and its presentation. With increased awareness and utilization of rapid screening methods, earlier diagnosis may allow for the determination of effective treatment strategies with the goal of improving chances of survival.

http://links.lww.com/WNL/C797
References:


Figure 1. MRI brain
MR T1 contrasted axial slices from (A, B) initial presentation compared to (C, D) current presentation, showing interval enlargement of the left posterior parieto-occipital lesion and new cerebellar and pontine lesions.
Figure 2. Autopsy results
Hematoxylin and eosin-stained sections demonstrated (A, B) scattered multinucleated giant cells (black arrows) and clusters of epithelioid histiocytes and lymphocytes (red arrows) among sheets of swollen, reactive astrocytes (100x magnification). Meninges were involved. Areas of gross hemorrhagic necrosis disclosed fibrinoid vasculitis and microthrombosis, with focal hemorrhagic coagulative necrosis. On 200x magnification, (C) perivascular aggregates of large cells were seen among the inflammatory infiltrates (black arrow). (D) High-power (400x magnification) view of these cells demonstrated granular cytoplasm, low nuclear to cytoplasmic ratios, and small, round nuclei with prominent nucleoli. The cells were identified as *Balamuthia mandrillaris* trophozoites.