Teaching NeurolImage: A New Imaging Finding in a Boy With Salla Disease Caused by a Pathogenic Variant in the SLC17A5 Gene

Author(s):
Juhi Gupta, MD, DM¹; Nihaal Reddy, MD²; Kshitij Mankad, MBBS³; Utkarsh Kabra, MD⁴; Anu Bhandari, MD¹; Meenu Bagarhatta, MD¹; Ashok Gupta, MD¹

Corresponding Author:
Juhi Gupta, juhiguptadr@gmail.com

Affiliation Information for All Authors: 1. Sawai Man Singh Medical College, Jaipur, India; 2. Rainbow Children’s Hospital, Hyderabad, India; 3. Great Ormand Street Hospital for Children, London, UK; 4. Getwell Poly Clinic and Hospital, Jaipur, India

Equal Author Contribution:

Contributions:
Juhi Gupta: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Nihaal Reddy: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Kshitij Mankad: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Utkarsh Kabra: Major role in the acquisition of data; Analysis or interpretation of data
Anu Bhandari: Major role in the acquisition of data; Analysis or interpretation of data
Meenu Bagarhatta: Major role in the acquisition of data; Analysis or interpretation of data
Ashok Gupta: Major role in the acquisition of data; Analysis or interpretation of data

Figure Count:
1

Table Count:
0

Search Terms:

Acknowledgment:

Copyright © 2023 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
A 7-year-old boy born to non-consanguineous parents presented with developmental delay, dysmorphism, and an ataxic gait. MRI of the brain demonstrated hypomyelinating leukodystrophy (Figure 1A,B), cerebellar atrophy (Figure 1C,D), and thinning of the corpus callosum (Figure 1E). T1 hyperintensities were also seen in the bilateral deep grey nuclei, brainstem, and cerebellum (Figure 1F-H). Genetic testing confirmed a diagnosis of Salla disease (SD) by revealing a likely pathogenic, homozygous missense variation in the \textit{SLC17A5} gene (chr6:g.73644582C>T). Both parents were found to be carriers consistent with autosomal recessive inheritance. Sialic acid storage disease (SASD), is a neurodegenerative lysosomal storage disorder, which can present as a slowly progressive form (Salla disease), a severe fetal-onset form, or as infantile free sialic acid storage disease (ISSD), however, intermediate forms also exist.\(^1\) The differential for symmetrical T1 hyperintensities includes kernicterus, hypoxic ischemic injury, neurodegeneration with brain iron accumulation, Fabry disease, other lysosomal storage disorders, and Wilson disease which were considered and excluded for this case. T1 hyperintensities have not previously been described in SD.\(^1\) One plausible explanations is the deposition of sialic acid, which is a paramagnetic substance.\(^2\)
References

Short Figure Title

MRI Brain Shows Diffuse Hypomyelination with Hyperintensity of Basal Ganglia, Brainstem and Cerebellum
Figure Legend

Figure 1: T2W axial images (A, B) demonstrate diffuse hyperintense hypomyelinating pattern. T2W axial (C), and coronal (D) images demonstrate cerebellar atrophy. T1W sagittal image (E) demonstrates corpus callosum thinning and vermian atrophy (arrows). T1W axial images (F, G, H) demonstrate hyperintensity (arrows) of basal ganglia, brainstem and cerebellum.
Teaching NeuroImage: A New Imaging Finding in a Boy With Salla Disease Caused by a Pathogenic Variant in the SLC17A5 Gene
Juhi Gupta, Nihaal Reddy, Kshitij Mankad, et al.

Neurology published online August 1, 2023
DOI 10.1212/WNL.0000000000207546

This information is current as of August 1, 2023