CORRECTION

Can an Intervention Be Cost-effective Following a Negative Clinical Trial?

In the Editorial “Can an Intervention Be Cost-effective Following a Negative Clinical Trial?” by Ney et al.¹, the authors have revised the second sentence of the fourth paragraph to read as follows:

In frequentist statistical evaluations, a p-value is the probability of obtaining the observed effect or a more extreme effect given the null hypothesis is true. An a priori set level of significance (alpha or type 1 error rate, i.e., probability of rejecting the null hypothesis when it is true) is used as a threshold to determine if an observed p-value is low enough to reject the null hypothesis; commonly set at 5%. P-values are affected by effect size, sample size, and statistical power, where a type II error (false-negative rate, i.e., probability of failing to reject a null hypothesis that is false) of 10%–20% is usually deemed reasonable.

The authors regret the misleading statement previously published.

REFERENCE

¹Ney J, van der Goes DN. Can an intervention be cost-effective following a negative clinical trial? Neurology. 2023;100(24):1123-1124.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
[CORRECTION] Can an Intervention Be Cost-effective Following a Negative Clinical Trial?
John Ney

Neurology published online August 29, 2023
DOI 10.1212/WNL.000000000207838

This information is current as of August 29, 2023