Clinical Reasoning: A 22-Year-Old Man With Multifocal Brain and Osseous Lesions

Author(s):
Sumanth Reddy1,2; Sara C LaHue3; Soonmee Cha, MD1,2

Corresponding Author:
Sumanth Reddy, Sumanth.tan.reddy@gmail.com

Affiliation Information for All Authors:
1 Department of Neurology, School of Medicine, University of California, San Francisco, California. 2 UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California. 3 Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California.

Equal Author Contribution:

Contributions:
Sumanth Reddy: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Sara Catherine LaHue: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Soonmee Cha: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
2

Table Count:
0

Search Terms:

Acknowledgment:
The authors would like to sincerely thank this patient for granting us permission to share his story prior to his death and for allowing us to participate in his care.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Abstract
The evaluation of patients with disseminated processes with central nervous system and osseous involvement is often challenging. A 22-year-old healthy man developed left-sided weakness, paresthesias, and neck pain over several weeks. On clinical exam he was noted to have decreased right eye visual acuity, left-sided pyramidal weakness and numbness, and bilateral hyperreflexia. Magnetic resonance imaging (MRI) revealed multifocal widespread abnormalities: nonenhancing lesions throughout the infratentorial brain, pituitary gland, right frontal lobe, and optic nerves, in addition to an enhancing intramedullary cervical spinal cord lesion, extensive nodular leptomeningeal enhancement of the spine, and numerous enhancing bony lesions throughout the vertebrae and iliac bones. Cerebrospinal fluid (CSF) analysis was notable for normal opening pressure, protein 465 mg/dL, glucose 21 mg/dL, and normal cell count. Extensive serum and CSF analysis for infectious, inflammatory, and neoplastic etiologies was unrevealing, and the diagnosis was ultimately revealed after additional staining of tissue biopsy specimen from sacral and cerebellar biopsies. This case highlights the differential diagnoses for widely disseminated disease affecting the central nervous system and bones, and informs pediatric and adult clinicians of important recent developments regarding this diagnostic entity.
Section 1:
A 22-year-old healthy man developed left-hand weakness, paresthesias, and neck pain over several weeks. He initially underwent chiropractic treatment for presumed nerve impingement without improvement. One month later, he presented to a local hospital with worsening left arm weakness and paresthesias, as well as new left leg weakness, headache, nausea, and vomiting. Examination revealed an alert mental status, decreased visual acuity in the right eye, mild weakness in the left triceps, wrist extensors, finger extensors, and ankle dorsiflexors, decreased sensation throughout the left hemibody to touch, and bilateral hyperreflexia. Vital signs, comprehensive metabolic panel, complete blood count, and human immunodeficiency virus testing were unremarkable.

Questions for Consideration:
1. What localizations could account for these symptoms?
2. What diagnostic categories should be initially considered?
3. What additional studies should be pursued next?

Section 2:
The patient’s presentation is notable for left sided pyramidal weakness and hyperreflexia involving the arms and legs, localizing to an upper motor neuron process at the level of the cervical spine, brainstem, white matter tracts, or the primary motor cortex. Assuming the decrease in monocular visual acuity is due to the same underlying process, possible localizations for this symptom include – 1) a solitary or multifocal lesions causing elevated intracranial pressure and papilledema, or 2) multifocal lesions, with involvement of the right optic nerve or retinal fibers. The bilateral hyperreflexia further supports either multifocal lesions or more caudal involvement of the brainstem or spinal cord rather than a single lesion in the contralateral primary motor cortex or white matter tracts. The differential diagnosis for subacute, progressive central nervous system (CNS) processes in young adults is broad, and includes indolent infections, neoplasms, autoimmune diseases, toxic/metabolic etiologies, and mitochondrial and other genetic disorders. The initial workup should include magnetic resonance imaging (MRI) of the brain and spine with and without contrast, cerebrospinal fluid (CSF) analysis, and consideration of further serum studies pending the MRI and CSF results.
MRI of the brain revealed non-enhancing T2/fluid-attenuated inversion recovery (FLAIR) hyperintense nodular lesions throughout the infratentorial brain, right frontal lobe, septum pellucidum, pituitary gland, and optic nerves (Figure 1). Spinal MRI demonstrated an intramedullary enhancing lesion spanning C5-C7, enhancement of the conus, and smaller non-enhancing lesions throughout the spinal cord (Figure 2). There were also numerous enhancing bony lesions throughout the vertebrae and both iliac bones, and extensive nodular leptomeningeal enhancement of the spine. Lumbar puncture revealed normal opening pressure, 13 red blood cells, 5 white blood cells (54% monocytes, 46% lymphocytes), markedly elevated protein (465 mg/dl), low glucose (21 mg/dL), and unrevealing cytology and flow cytometry.

Questions for Consideration:

1. Considering the imaging characteristics and CSF profile, what specific etiologies could explain his presentation?
2. What additional workup should be considered?

Section 3
Infectious causes of disseminated CNS and osseous lesions with markedly elevated protein and hypoglycrrhachia include tuberculosis (TB), Cryptococcus species (spp), and endemic mycoses such as Coccidioides spp. An acellular CSF profile can be seen in each of these infectious etiologies, though would be unusual in an immunocompetent host. Extrapulmonary manifestations of TB that resemble this case include basilar-predominant nodular lesions, intramedullary enhancing lesions, diffuse leptomeningeal enhancement throughout the spinal cord, vertebral lesions due to Pott’s disease, and other sites of bony involvement. Fungal infections such as Cryptococcus and Coccidioides can also present with subacute onset meningioencephalomyelitis, occasionally with vertebral and other osseous involvement. The tapeworm Echinococcus granulosus, can also cause osseous and CNS lesions; however these lesions are typically cystic in nature unlike this case. His extensive infectious workup was unrevealing, including serum and CSF cryptococcal antigen and Coccidioides antibodies (by compliment fixation and immunodiffusion), serum and CSF fungal and acid-fast bacilli cultures, CSF mycobacteria polymerase chain reaction, and serum tuberculosis interferon-gamma release assay.
Malignant etiologies should also be considered. In particular, given the lytic appearance of the vertebral lesions, metastatic carcinomas including renal cell carcinoma, lung cancer, melanoma, and gastrointestinal malignancies are possible etiologies.4 Systemic non-Hodgkin lymphoma can present with secondary CNS involvement and lytic bone lesions, though this is more common in the setting of relapse rather than the initial presentation.5 Histiocytic disorders such as Langerhans cell histiocytosis and Erdheim-Chester disease (ECD) are associated with skeletal involvement and a variety of CNS lesions, though the osseous lesions in ECD are more commonly sclerotic lesions of the long bones.6 Although primary CNS tumors rarely disseminate outside of the CNS and leptomeninges, there have been reports of systemic metastasis in glioblastoma, oligodendroglioma, diffuse midline glioma, and others.7,8 This patient underwent positron emission tomography demonstrating hypermetabolic activity in the lower cervical spinal cord lesion and multiple vertebral and sacral bony lesions, and three lumbar punctures without evidence of atypical or clonal cell populations on CSF flow cytometry and cytology.

Neurosarcoidosis is one of the few autoimmune etiologies that can cause hypoglycorrhachia, along with basilar-predominant brain involvement, intramedullary lesions, and nodular leptomeningeal enhancement.9 Osseous involvement, including multifocal lytic-appearing vertebral lesions, is another extra-pulmonary manifestation of sarcoidosis.10 Our patient’s serum angiotensin converting enzyme level was normal, though this test is insensitive for neurosarcoidosis. Furthermore, the absence of hilar lymphadenopathy or other pulmonary manifestations does not exclude this disease, as extra-pulmonary disease can be the presenting symptom in a minority of patients with sarcoidosis.9 Neuro-Bechet’s is another noninfectious etiology that can present with basilar-predominant leptomeningitis, intramedullary cord lesions, and hypoglycorrhachia, however osseous involvement is typically limited to nonerosive arthritis rather than disseminated lytic bone lesions.11 Among the other categories initially considered, his presentation is less consistent with a toxic-metabolic, genetic, or mitochondrial disorders, given the hypoglycorrhachia and imaging characteristics.
Questions for Consideration:

1. What diagnostic tests should be pursued next?
2. Given these imaging findings, what complications may arise during his clinical course?

Section 4

The patient’s neurologic status progressively worsened, as he developed spastic paraparesis, urinary retention, hydrocephalus requiring external ventricular drain placement. He had multiple episodes of acute altered mental status with forced gaze deviation concerning for seizures. He underwent biopsy of the right sacral bone and cerebellum lesion, which demonstrated some atypical cells but was inconclusive on initial analysis. He received empiric intravenous methylprednisolone 1g daily for five days and intravenous immunoglobulin 2g/kg as there was some concern for an underlying neuroinflammatory process (possibly granulomatous), however he continued to worsen clinically and radiographically. He was ultimately started on empiric tuberculosis treatment and then transferred to our institution for further evaluation.

Further immunohistochemical staining of the sacral and cerebellar specimens was positive for histone H3 K23M mutation, establishing the diagnosis of diffuse midline glioma (DMG), H3 K27M-mutant, World Health Organization (WHO) grade IV, with diffuse osseous metastases. He received one week of palliative craniospinal irradiation, and ultimately died five months after symptom onset.

Discussion

Diffuse intrinsic pontine glioma (DIPG) was previously conceptualized as an aggressive primary midline CNS malignancy affecting pediatric patients. In 2016, the WHO Classification of CNS Tumors replaced DIPG with a new entity, diffuse midline glioma (DMG), H3 K27M-mutant, based on the observation that post-translational modifications to histone H3 K27 conferred a poor prognosis among pediatric DIPG cohorts (median overall survival, mOS 10-14 months).\(^\text{12}\) The 2021 WHO Classification of CNS Tumors modified the name to DMG, H3 K27-altered, and includes gliomas with H3 K27 alteration regardless of midline location in the brain or spinal cord.\(^\text{13}\) Given the prognostic implication of this histone alteration, these tumors are designated as WHO Grade IV tumors regardless of the histologic appearance.
Although previously viewed as a disease of childhood, DMG is increasingly identified among adults, with retrospective analysis suggesting that 15% of adult midline gliomas harbor H3 K27 alterations. In contrast to children, survival is generally longer among adults (mOS 8.4 – 27 months) and outcomes among H3 K27M-altered and H3-wild type high-grade midline gliomas are similar. The diencephalon, spinal cord, and brainstem are common sites of involvement, often with heterogenous parenchymal enhancement. Current treatment strategies are extrapolated from glioblastoma multiforme and other aggressive CNS tumors, including craniospinal irradiation with or without adjuvant chemotherapy (e.g. temozolomide) and/or surgical resection. However, ongoing clinical trials are investigating novel treatment approaches, including imipridones such as ONC201 (TNF-related apoptosis inducing ligand (TRAIL)-inducing compounds), panobinostat (histone deacetylase inhibitor), chimeric antigen receptor (CAR) T-cell therapy, and several others. Several trials have also expanded enrollment to include adults with DMG.

Leptomeningeal dissemination occurs in a minority of adults with DMG; however widely disseminated osseous metastases, as described here, are rare and contributed to diagnostic uncertainty. Among the previously reported adult cases, diffuse osseous involvement was present at diagnosis in three adult patients who generally had an aggressive clinical course (OS 4-13 months) similar to this case. The diagnosis of DMG among adults is likely to increase as immunohistochemical staining for this histone alteration becomes more widely available. Furthermore, cell-free DNA and other circulating biomarkers are being investigated as noninvasive alternatives for diagnosis, particularly among patients at higher risk for biopsy. As such, recognition of this atypical presentation of DMG is important for guiding diagnostic workup and prognostication, and for advancing treatment given the increasing number of clinical trials.
Figure 1. Brain MRI at presentation
A. Axial fluid-attenuated inversion recovery (FLAIR) demonstrating multiple hyperintense pial nodules coating the brain stem and cerebellar vermis
B. Axial FLAIR demonstrating diffuse subependymal hyperintense lesion coating the ventricular surface
C. Axial T1 post-contrast demonstrating an enhancing nodule of infundibular stalk
D. Coronal T1 post-contrast: demonstrating an enhancing nodule of infundibular stalk
Figure 2. Spinal MRI at presentation

A. Sagittal T1 post-contrast demonstrating enhancing osseous lesion of C2 (thick arrow) and intramedullary cord mass at C5 and C6 levels (small arrow)

B. Sagittal T1 post-contrast demonstrating multiple enhancing osseous lesions. On pre-contrast T1-weighted imaging, these lesions are hypointense, marrow replacing lesions.

C. Axial T1 post-contrast demonstrating osseous lesions enhancement within the thecal sac

D. Axial T1 post-contrast demonstrating enhancing osseous lesions in the lumbar spine.
REFERENCES

