The challenge of follow-on biologics for treatment of multiple sclerosis

S.C. Etingof, PhD
J.P. Steinier, PhD
C.H. Polman, MD, PhD
J.A. Cohen, MD
M.S. Freedman, MSc, MD
L. Kappos, MD
A.J. Thompson, MD
J.S. Wolinsky, MD

Address correspondence and reprint requests to Dr. Stephen C. Etingof, E-mail: steven@ncbi.nlm.nih.gov

1993年，治疗多发性硬化症的第一个生物制剂产品（见表），干扰素β-1b（北美Betaferon™，
其它地方Betaferon™，拜耳辉瑞公司，德国柏林）被美国食品和药品监督管理局（FDA）批准
用于治疗复发-缓解型多发性硬化症。随后在全球范围内其他监管部门批准，随后，两种配方成分
的干扰素β-1a（Avonex™，Biogen IDEC公司，剑桥，马萨诸塞州，Rebin™，EMD施克兰，
瑞士日内瓦）和最近的单克隆抗体泰莎单抗（Tysabri™，Biogen IDEC公司，剑桥，马萨诸塞州）
被批准。治疗多发性硬化症的生物制剂的专利保护已经结束，从而可以开发和审批这些生物治
疗的一个或多个“普通”版本，它们被称为生物仿制药（特别是在欧洲）或后续生物制剂（FOBs，
将在本文中使用）。低价格的FOBs将缓解消费者和第三方付费者的经济压力，正如那些替代专利小分子药物的低价普通药物那样。不过，为了保护患者，FOBs应具有与那些专利产品相等的疗效、安全性和耐受性。

生物技术和经济、道德、政治动了对FOBs的兴起，但也存在着激烈的争论，其中包括有关开发和销售。在FOBs的开发和开发过程中，它在2005年欧洲药品管理局（EMA）发布了一份指南
[1]，在2005年6月和7月由欧洲药品管理局（EMA）发布的第二份指南[2]。其中国Z版包括了某火类药物
的指导原则[3]。瑞士监管局也已经按照欧洲药品管理局的授权制定了他们的指南[4]。2008年，
加拿大[5]和日本通过了它。也起草了关于FOBs的指南草案。

程序和指南旨在确保FOBs应具有与它的专利产品一样的安全性和有效性，需要仔细权衡使用
这个产品的患者和医生与支付药物费用的第三方付费者、以及FOB临床和科学研究者知识产权
保护之间的利益和需要。在此，我们将讨论FOBs开发中所面临的种种问题，特别是对于用于治疗
MS的FOBs，它将使患者、医生和第三方付费者在将来可能面临的选择过程中，获得更多知情决定的
权利。

开发FOBs的经济压力

正如普通药物一样，源于消费者和生产者的经济压力是开发FOB的主要驱动力，生物仿制药
对于患者和第三方付费者而言通常非常昂贵[6]，而FOBs则便宜很多，每年多发性硬化症治疗的生物
仿制药费用已经降到20000美元，所以需要更便宜的治疗。对于FOBs的生产者，
能够生产一种有利润、有竞争力对于消费者来说是性价比的产品是一种诱人的经济刺激。例如在开发和销售有利润的、消费者接受价格的产品，普通药物或FOBs的成本要求远远不如普通药物，但普通药物的专利许可和相关产品的销售是不可逆转的，能绕过现有的临床试验和实现临床试验过程。

非专利的小分子药物和专利药物相比，将为消费者节省至少超过50%的费用。对于FOBs来说，因生产过程更复杂，其开发的时间和成本可能会更长。一个FOB将比其专利产品便宜，20%-30%的价格进入市场，随着时间的推进，更多的FOBs竞争者进入市场，会节省更多。对于消费者来说，普通药物的最终价格是由以下几方面决定的：厂商申请普通药物与其专利产品的可比性，这也是不确定和争论的地方。能否用低成本的通常用于普通药物的快速评价系统来证明FOB和专利产品之间具有同样的疗效，目前尚未定论，如果答案是否定的，则FOBs快速评价和审批将可能是高风险和低回报的。

FOB的等效性或可比性

对于FOB最重要的要求是表明它与专利产品具有相似或可比性，如同普通药物一样，不能以牺牲安全性为代价来换取价格。对于普通药物，安全性需要在相同或相似的条件里通过应用长期的临床试验和标准来规范。

然而，美国联邦食品药品和化妆品法用于小分子药物的临床试验可能不适用于其他FOB。另外，FOBs的监管也可能不适用于其他FOB。这可能是因为它具有治疗等效性。

普通药物的批准和FOBs的意义

在90年代初期，FDA关于非专利药品的规则条例实施以来，厂商通过证明药物成分相同（即普通药物具有专利药物相同的活性成分）和生物等效性（即普通药物和专利药物用于人类的剂量是相同的），就能够证明非专利药物与专利药物具有治疗等效性。它的可比性是否在临床中发现具有相似的化学大小/分子量的结构评估，成分分析和通过活性检测，或眼相聚合误差法和化学分析等方法确认。比较的药物代替动力学应该显示在动物和人类给药后具有相似的药物传输方式。

FDA对于普通药物和专利药物之间“等效”的要求不是绝对的。FDA原则是接受普通药物是专利药物20%以内变化范围的资料，因为任何药物在人体的表现存在差异，一个精确的差异限制或许不能增加任何益处。对于那些治疗指数小，可以通过监测血浓度，药效学来指导剂量的药物，FDA接受普通药物药理学和生物等效性是专利药物的80%-125%变化范围的资料，因为有方法...
可以检测以指导剂量改变达到最佳疗效。

从药物和生物的等同性去预测治疗效果的适用性及可替代性的，其对的完整临床开发，普通药物必须强调与专利药品相同的给药途径、剂型、强度和应用指南。其后，普通药物和它的专利药物（至少是自1977年以来生产的专利药物）之间可以实现完全替代。没有剂量的调整。

格拉默酸盐（Cephalosporin），在华制药工业有限公司，国内维生素B群（以色列）被广泛应用于复方型多效性抗感染、为作为药物敏感度监督、非生物制药。然而，由于其缺乏长度、分子量、构型（部分或全部决定于免疫调节能力）等方面的些许不同，普通药物可能很难与专利药物之间的可比性。目前已制定的美国药物指南要求普通药物说明与专利药物相同的物理、化学特性及相同的用法。

即便有足够的技术能够评价普通药物与专利药物互换性的非临床分析数据，对于确定普通药物与专利药物的相同内容有真正有效的极限，从专利药到它的普通药物的转变或许会导致不可预知的不良事件。在生物制剂和FOLS之间适当的自由替代通常很少（88.6%）。如果这是这样，相互替代的药物必须直接用于临床的研究，表明在FOLS和它的专利药物之间反应的对它的安全性和有效期没有负面影响。一个可能的FOLS也许在其他方面被看作是治疗药物，但不能看作是它的专利药物的替代品，这种结果可能导致FOLS使用受限。

药物和生物制品之间的差异影响判断它们与专利产品的可比性

对于普通药物或FOLS与它们各自的专利药物之间的可比性的要求不同，这由于它们不同的化学和结构复杂性的导致的。肽类、蛋白类的结构和质量是使得开发一种与专利药物的普通药物或FOLS成为可能，但这样被技术仅仅表明产品氨基酸组成、序列（基本结构）、蛋白结构的最低水平与专利产品相似，这可能还不够以充分证明其相似性。

小分子药物通常具有有限的化学功能基团的有机化学药品，功能基团在它基本分子框架上相对少数氨基酸的内部，而一个生物制剂在30到300个氨基酸的链内也许包含更多的功能基团。小分子药物分子大小一般在300-1000 Da，而生物制剂典型的分子量在3000-30000 Da更大，可大到化疗用免疫球蛋白分子量达15000 Daemu。例如，治疗药物具有的分子量从400到550 Da之间，而最近批准的治疗多发性骨髓瘤的生物制剂，即VLA4结合蛋白的抗体单药和细胞因子重组单抗（构成免疫球蛋白的2个蛋白重链和2个蛋白轻链组成）的分子量大概是149000 Da。

生物制剂包括二级结构（多肽链有或者没有成为折叠状，如α-螺旋和β-折叠），三级结构（分子折叠通过二级键和氢键保持蛋白质的稳定性），四级结构（连接2个或更多多肽链单位形成功能性生物蛋白）。小分子中通常没有这些结构特征。另外，蛋白的生物制剂需要有翻译后的修饰，而小分子则没有，例如脂肪酸化、多硫化和碳化等。这些差异是生物制剂保持活性所必需的。在物理结构和大分子生物制剂组成的复杂性可以影响免疫原性和不良事件。它有可能预示对于生物显效性和治疗景恶性的主要影响，甚至是不同种族之间对不同地点生产的相同产品也会有此影响。

这些问题与目前治疗多发性骨髓瘤的FOLS有特殊的联系。在目前临床的三个专利生物制剂的α-干扰素，用生物反应器/细胞上生产产品，氨基酸组成、翻译后修饰如糖化等过程中（故意）制造出不同的变化，这样的变化可能影响干扰素的相对生物利用度，至少部分改变产品在温度和给药途径的差异，导致主要相似治疗效果[11]和诱导抗体和抗体的能力的差异。如果这种差异免疫原性的差异也存在于这些产品和那些单抗的FOLS中，那么中和、结合抗体也影响药代动力学、有效性和不良事件。FOLS和它们的专利药物的等效性就值得怀疑。为了帮助理解这种潜在差异的影响，观察生物制剂和FOLS的蛋白质量集体、检测中性、结合抗体，用单克隆抗体对如MX蛋白，α-微球蛋白和脂蛋白脂质抗原的治疗患者，观察它们对生物活性的影响。然而，还不确定是否仅仅这种评价就足够有效监测或预测免疫原性的差异和治疗相似性的影响。

因此，生物制剂的巨大复杂性带来了生
物制剂和FOBs的结构和功能存在着巨大差异的可能性。这就使得评价FOBs和专利制剂结构和功能相似性的工作显得格外重要，尤其在那些快速评价系统中。

指导普通药物在美国审批的指南对FOBs快速开发和批准的启示

1984年美国国会通过的《哈奇－韦克斯曼法案》规定了指导普通药物开发和审批过程的简易化和新药申请。该法案旨在平衡药品创新和加强得到低价格的专利药物替代物之间的矛盾，避免涉及重复的临床试验相关伦理道德。

这些条款允许FDA接收安全有效的专利药物的替代物或普通药物的批准。在FOBs，限制药品和没有普通替代物的制剂中，这条途径已经得到了认识。FDA已经通过这种方式批准了后续蛋白产品，包括人生长激素。

建立对于FOBs的监管指南，FDA将需要与美国国家的立法委员会进行协调，这样的一些结果已经以提案的形式交到美国国会(2009年3月)，该法案重新定义了对低价格的FOBs的监管，患者的在知情权和健康权之间的关系，但此法案可能没有被通过。美国国会没有要求任何有关FOBs的监管程序必须满足某些要求来确保FDA评审和批准的过程，并且最终的审批过程仍然困难。但是，一个可靠的审批过程将使FDA能够获得知情权和市场保护，即使FDA被授予立法权，它将监管指南的法规草案，使公众讨论和最终实施。

对于FOBs的指南也不应仅仅针对某一产品或一组产品。监管部门希望有更广泛的指导，但是最终的要求将依赖于参与者和产品的具体情况。这将包括快速能力的评估能力及排除临床试验的评估，开发FOBs对药物的环境，专利药品审批流程的标准化和FOBs的临床耐药性评估，FOBs和其他专利药品在药物化学和免疫学分析之间的差异使得不能保证它们在安全性上具有可比性，不确

生物制剂生产过程的变化：FOBs快速开发和审批的重要性

生物制剂的生产过程，在很多情况下可能会造成严重的后果，但通过国际会议等，FDA和日本的协调组织已声明，关于来源产品的制造，一个生产者是通过一定生产过程的改变可比性的结论，生产者提供生产过程变化后直接对比的资料，这种声明尤其不能被广泛地运用于FOBs，因为FOBs的生产需要多个制造商的参与。但是，上述的设定确实能够为非特异性的FOBs提供更快的审批方式。对一些生产过程的变化，单凭的物理化学和生物的测试数据可能充分表明这种变化没有影响到产品的安全性和有效性。但是，一旦差异被检测到，对FOBs的临床试验就必须要进行。这种研究的费用将取决于产品、生产开发阶段、预测临床应用和比较研究时的物理化学及生物学的特性。

FDA批准一个新的细胞系用于生产干扰素γ-1a中的一个成分（应用于多发性硬化的治疗），依赖于与产品相关的物理化学对比研究和各种各样的生物检测。已生产的不同干扰素γ-1a的一个治疗人群血清白蛋白的成分，
经过与它的原始产品相比较研究和为期1年的3期临床试验均证明注射部位反应发生率降低，已被欧洲医药评估署批准[1]。这个成分也被FDA批准，它是生物制品许可证申请的补充数据。欧洲医药评估署批准了抗素β-D-ST(Extravas)（诺华公司，巴塞尔，瑞士）的一个新的销售许可和商标。在新生产者和与原始生产者之间作为一次新的说明书，对已经服用的产品允许使用所有原料药的、临床前和临床的资料；对于新生产者生产的该产品增加了3期临床试验性的方案[4]。FDA也批准了新的临床和用于生产治疗儿童生长迟缓的药物艾伯明重组卵清蛋白（Implagene，Inamed公司，里士满，弗吉尼亚州）[5-11]，重组人生长激素（Humatrope™，山德士，霍尔契克林，德根）。然而，FDA拒绝重新审批用于治疗Fompe病的药物naltrexone alfa（Myozyme），美国酶公司，剑桥，马萨诸塞州）的生产改变资料。因为没有附加的临床试验，FDA仍不明确在原始产品和新产品之间的数据与数据之间存在着怎样的差异，也不明确这种差异是否可以影响安全性和有效性[4]。

用于多发性硬化症的FOMS及其审批的评论和意义

FOMS或根据成为FOMS的产品已经在全国范围内上市。但是，对于真正的用于多发性硬化症的FOMS，被欧洲及美洲批准。最近，欧洲医药评估署的人类应用药物委员会（CHMP）拒绝了用于缓解型多发性硬化症的治疗的FOMS（干扰素β-1a（Interferon），生物合作组织，巴尔，瑞士）的销售权。人类应用医药委员会指出，这个药物和治疗多发性硬化症的其他药物中的活性药物之间存在差异，这种差异阻止了这个产品和已公布的专利产品组合中的可比性及对FOMS本身的研究结果。根据人体应用医药委员会的报告，这个FOMS的临床试验没有证明它的有效性，但是委员会尚不能确定这种结果是由于临床试验设计缺陷、分析过程误差，还是由生物制备配方本身造成的[1]。

医生、医生和第三方支付者都希望FOMS的安全性、有效性及可替代性与专利药物相当。不管目前治疗多发性硬化的生物制剂多么昂贵，患者和他们的医生都不愿意仅仅之

参考文献
