中和抗休对β干扰素生物标志物反应的影响

INSIGHT研究

Effect of neutralizing antibodies on biomarker responses to interferon beta

The INSIGHT study

Andrew R. Pachner, MD
John D. Warth, PhD
Amy Pace, ScD
Susan Gelfand, PhD
On behalf of the INSIGHT investigators*

Address correspondence and reprint requests to Dr. Andrew R. Pachner, UMDNJ-New Jersey Medical School, 143 Springfield Avenue, New Brunswick, NJ 08903, pacrner@umdnj.edu

摘要

背景：β干扰素（IFNβ）能有效地减少多发性硬化病人的活动，中和抗休（Nabs）会减弱或去除β干扰素的临床治疗效果。β干扰素反应的生物标志物，例如粘病毒抗病毒蛋白A（MxA），NOW，具有识别氨基酸重复序列1的干扰素诱导蛋白，可以被用作检测体内中和抗休对于β干扰素生物活性的影响。

方法：在多中心、开放性研究中，首先在诊断阶段检测抗休水平，然后在基线（阴性率3周以内）和基线后6个月检测抗休水平。MxA，NOW，和IFIT-1水平，本研究在肌内注射IFNB-1a，皮下注射IFNB-1a和IFNB-1b治疗的复发型多发性硬化患者中开展。

结果：在378例患者中，肌内注射IFNB-1a治疗的患者具有更低水平的MxA（P=0.0006）和IFIT-1（P=0.001）。肌内注射IFNB-1a公司在中性粒细胞（EAB+）和中性粒细胞（EAB-）的患者与干扰粒细胞阳（EAB+）的患者具有更高水平的MxA，NOW，和IFIT-1（P＜0.0001）。在IFNB-1a和IFIT-1的患者中进行中和抗休滴定度水平的分层分析，分别结果显示，中和抗休滴定度在200倍中和抗休水平（TRU）的患者中显示减弱的生物标志活性，而在中和抗休滴定度在1000倍中和抗休水平（TRU）以上的患者中显示增强的生物标志活性。β干扰素反应的生物标志物活性在中和抗休滴定度中保持稳定的活性状态。

结论：这些资料表明，高滴定度的中和抗休阻止β干扰素在体内发挥效应。

NEUROLOGY 2009;73:1893-1898

摘要

β干扰素（IFNB-1a）或IFNB-1b治疗复发型多发性硬化（MS）时，可以减少患者的复发率和脑部损害。因此，β干扰素结合到干扰素αβ受体（IFNAR）产生生物学效应，包括诱导抗病毒蛋白和上调，下调免疫调节基因。IFNB-1b结合到干扰素αβ受体（IFNAR）已经用来作为β干扰素在多发性硬化患者中反应的生物标志物。β干扰素诱导的干扰素诱导蛋白α（MxA）和β干扰素诱导的干扰素诱导蛋白β（NOW）是β干扰素特异性活性和中和抗休活性的标志。尽管这些标志物被检测到RNA和MxA，NOW，和IFIT-1的存在与中和抗休活性有直接的相关，这些标志物的阳性或阴性与中和抗休的临床效应无关。

声明

*List of investigators appears in the appendix at the end of this article.

Footnotes:

1. Supported by Biogen Idec.

Disclosures: Author disclosures are provided at the end of the article.
于临床和MELD的效果下降也许不能够被检测，即使在很多组能达24个月的时间中
(1-3)，并且需要3到4年才能达到统计学意义(14)。因此，检测生物标记物如急性病毒
抵抗蛋白A、乙酰化和IFIT-1，可以提供早期、客观和可靠的指标来明显中和抗体的形
成。中和抗体的形成意味着在不同的多发性硬化个体应用丙干抗病毒治疗时出现了潜在的
临床效果下降。

中和抗体对于干扰素反应基底中出现生物标志物反应研究(INSIGHT)的目的是检测β
干扰素抗体体内与β干扰素连接到千扰素受体的3个独特性生物标志物：丙酸抵抗蛋白
A、乙酰化和IFIT-1的影像。在β干扰素治疗的多发性硬化患者中，这个研究亦可
提供中和抗体检测和生物标志物反应应用的基础。

方法

研究设计

这个多中心(表1)在神经科学网站，地址是
www.neurology.org，开放研究评价β干扰素
诱导的生物标志物反应，基于多发性硬化患者接
受β干扰素治疗后，β干扰素抗体的情况。患
者接受肌肉注射β干扰素-1a (Avonex®，生物
公司，剑桥，MA) 30 mg，每周一次。皮下注射
SCβ干扰素-1a (Rebif®，EMD-Serono Inc，罗
克兰，MA) 22 μg剂量每周3次，或者皮下注射
β干扰素-1b (Betaseron®，Biogen Idec，Monteryl，NJ) 250 μg隔周1次。所有在研究中
中心接受β干扰素治疗的符合条件的患者被邀请接
受检查。抗体的情况应用敏感的ELISA(ELISA)和
NASBA探针和DNA检测方法的病毒检测结果
数据见(17)。在检查时抗体情况的定义按41:1
患者入组各3个组中的每一个组：β干扰素/NA
阳性(β-NA+)，β干扰素/NA阴性(β-NA-)，β干
扰素/NA阴性(β-NA-)，和β干扰素/NA阴性(β-NA-)
(图1).

在每个研究点的β-NA+和β-NA-患者与β-NA+患者通过性别和应用β干扰
素的时间进行配对研究。在检查，从检查时起≤8
周为基线，及基线后的24周(6个月)进行抗体检
测。在基线和6个月时进行生物标志物反应的评价。

标准试验方案的批准

这个研究遵循赫尔辛基关于临床研究的伦理宜
宜，并且遵循本地公共卫生委员会的指导原则。

纳入和排除标准

如果患者年龄在18-65岁，诊断为复发型多
发性硬化，并且用相同的β干扰素治疗12到48
个月，这样的患者将被纳入。患者以前应用的
是不同的β干扰素制剂，但是后来转换到相同的
β干扰素治疗，并且应用新的治疗至12个月的患
者也被纳入。如果患者以前经过较早的β干扰
素和抗体实验，不管结果如何，或者如果是在
基线的6个月内正在接受或已经接受β干扰素
和任何免疫抑制剂或免疫调节剂联合治疗的患者
都将被排除。静脉注射激素者除外。

目的

主要目的是基线时比较β干扰素诱导MxA
的反应在β-NA+和β-NA-的患者中，次要目的是β
干扰素诱导的生物标志物反应中，中和抗体水平
和生物标志物反应相关。以证明是否β干扰素诱导
的生物标志物反应受到中和抗体影响，比较β-NA+和
β-NA-患者在基线和24周时β干扰素诱导的生
物标志物反应，与中和抗体水平相关的患者
特异性也被研究。

实验室评价

抗体筛查

根据前景的PCR方法研究(18-20)，应
用特异的ELISA和病毒抑制剂检测和
抗体和中和抗体的情况。中和抗体的定义在20个
倍稀释单位(CTD)时被确定为阳性有意义。2

生物标志物反应

在β干扰素注射后9到12
时抽取血样，生物标志
在基线和24周
时进行评价。应用多重实时PCR检测基因表达分
析，生物标志物应用以前研究的标准化表示(21-27).

在这个研究中，一个标准化≤5.0被认为是无生物活
性。

统计分析

组间比较应用方差分析方法，相关度分析采
用Spearman相关系数。采用logistic回归分析
评价患者的特征和中和抗体阳性有关的特征的关

《神经科学》中文版 第3卷 第4期 2010年 2月

130
图 1 入组图示

- 检测 ELISA 所在
- 718 名患者
- BAbH (2.8 U)
 720 名患者
 - 20 名患者
 - BAbH (2.5 U)
 484 名患者
 - 选择对照患者
 - 肝炎 I 类型
 - 由于 T 淋巴细胞
 - 由 I 类型
 - BAbH+ /NAB+ 9 名患者
 - 149 名患者
 - BAbH+/NAB+ 144 名患者
 - 4 名患者
 - 生物标记分析
 - 基线：133 名患者
 - 108 名患者
 - 生物标记分析
 - 基线：15 名患者
 - 12 名患者
 - 生物标记分析
 - 基线：25 名患者
 - 6 名患者
 - 6 个月生物标记分析：
 - 10 名患者
 - 5 名患者
 - 2 名患者
 - 2 名患者
 - 1 名患者
 - 2 名患者
 - 1 名患者
 - 1 名患者

BAbH=结合抗体；ELISA=凝胶ELISA；NAB=中和抗体；TRU=个例血清单位

结果

共有 718 名患者进行了抗体筛查：220 名是结合抗体阳性，498 名是结合抗体阴性（图 1）。在结合抗体阳性患者中，149 名患者的 BAbH (2.8 U) / NAB (2.0 U) 的 BAbH+ /NAB+ 比例为 20.8%。中和抗体阳性患者为 67.7%，中和抗体阳性患者为 71 名患者，其中包括 71 名患者，是中和抗体阴性。共有 183 名患者，包括 140 名结合抗体阳性 / 中和抗体阳性 (BAbH+ / NAb+) 患者和 48 名中和抗体阴性患者。通过治疗时间和性别进行分配研究。在入组的 3 组患者中，患者的性别有差异。中和抗体阴性组包括 19 名结合抗体阳性 / 中和抗体阴性 (BAbH+ / NAb-) 患者和 29 名结合抗体阳性 / 中和抗体阳性 (BAbH+ / NAb-) 患者。由于每个地点限制 8 个中和抗体阳性的患者，9 个结合抗体阳性 / 中和抗体阳性 (BAbH+ / NAb+) 的患者没有入组。有 175 名患者完成基线实验室检查和分析；由于 1 名患者在基线时不再使用 β 干扰素，1 名患者的样本丢失，共 173 名患者进行了生物标记反应分析。在 24 周 (6 个月随访)，136 名患者进行了生物标记反应分析；由于患者不再使用 β 干扰素，1 名患者的样本丢失，因此 14 名患者被排除在外，总共有 35 名患者退出试验。退出研究的患者与其他研究人群具有相似的基线特性。中断的原因包括撤回同意书和失访。

对于所有随访的患者，在各个组中，人口统计学具有相似性（表 e.1）。除了 BAbH+ / NAb- 患者 (46.1 vs 42.4 岁，P < 0.0001) 比 BAbH- /NAb- 患者年龄大，BAbH- /NAb- 患者 (30.3 vs 25.9 月，P=0.0163) 比 BAbH+ /NAb+ 患者有更长的平均随访时间。与随访的患者相比，
入组患者在所有临床方面具有更好的配对（表 1）。在所有入组的患者，11 名（3.8%）采用肌肉注射β干扰素-1a（4.3%）和皮下注射β干扰素-1a（10.1%）两种类型的β干扰素-1a。MxA 和 Vpr 与 β 干扰素-1a 没有显著差异。

在入组患者中，85 名（26.5%）患者在治疗前未接受任何干扰素治疗。在这些患者中，有 11 名（13%）患者未能达到治疗效果，但有 74 名（87%）患者在治疗后达到治疗效果。在达到治疗效果的患者中，有 54 名（73%）患者在治疗后 MxA 和 Vpr 水平显著下降，而未达到治疗效果的患者中，有 31 名（37%）患者在治疗后 MxA 和 Vpr 水平没有显著下降。

在治疗后，MxA 和 Vpr 水平在不同治疗组之间没有显著差异。在 β 干扰素-1a 治疗组中，MxA 和 Vpr 水平在治疗前和治疗后没有显著差异。在 MxA 治疗组中，MxA 水平在治疗后显著下降，但 Vpr 水平没有显著下降。在 Vpr 治疗组中，MxA 和 Vpr 水平在治疗后没有显著差异。在 β 干扰素-1a 和 MxA 治疗组中，MxA 和 Vpr 水平在治疗后显著下降。在 β 干扰素-1a 和 Vpr 治疗组中，MxA 和 Vpr 水平在治疗后没有显著差异。

在治疗后，MxA 和 Vpr 水平在不同治疗组之间没有显著差异。在 β 干扰素-1a 治疗组中，MxA 和 Vpr 水平在治疗前和治疗后没有显著差异。在 MxA 治疗组中，MxA 水平在治疗后显著下降，但 Vpr 水平没有显著下降。在 Vpr 治疗组中，MxA 和 Vpr 水平在治疗后没有显著差异。在 β 干扰素-1a 和 MxA 治疗组中，MxA 和 Vpr 水平在治疗后显著下降。在 β 干扰素-1a 和 Vpr 治疗组中，MxA 和 Vpr 水平在治疗后没有显著差异。
图 3 NAB 滴度在 20.99 IU/ml 的 BA+NAb+ 患者、NAB 滴度在 100 IU/ml 的 BA+NAb+ 患者和 BA+NAb- 患者的线性回归分析结果

图 A: NAB 滴度在 20.99 IU/ml 的 BA+NAb+ 患者、NAB 滴度在 100 IU/ml 的 BA+NAb+ 患者和 BA+NAb- 患者的线性回归分析结果

图 B: NAB 滴度在 20.99 IU/ml 的 BA+NAb+ 患者、NAB 滴度在 100 IU/ml 的 BA+NAb+ 患者和 BA+NAb- 患者的线性回归分析结果

图 C: NAB 滴度在 20.99 IU/ml 的 BA+NAb+ 患者、NAB 滴度在 100 IU/ml 的 BA+NAb+ 患者和 BA+NAb- 患者的线性回归分析结果

图 4 综述

亚组分析

中和抗体情况的变化

在研究过程中，有一小部分患者出现了抗体情况的下降。在第 3 周和第 4 周 (共 175 名患者) 中，131 名患者中有 32 名 (18.1%) 患者的 BA+NAb+ 反应结果提示其滴定度低于 20 IU/ml，而 BA+NAb+ 反应则显示为 BA+NAb-。在第 3 周和第 4 周中，分别有 23 名和 30 名患者 BA+NAb+ 反应结果提示其滴定度低于 20 IU/ml，而 BA+NAb+ 反应则显示为 BA+NAb-。

在第 5 个月和第 6 个月中，分别有 23 名和 30 名患者 BA+NAb+ 反应结果提示其滴定度低于 20 IU/ml，而 BA+NAb+ 反应则显示为 BA+NAb-。在第 5 个月和第 6 个月中，分别有 23 名和 30 名患者 BA+NAb+ 反应结果提示其滴定度低于 20 IU/ml，而 BA+NAb+ 反应则显示为 BA+NAb-。
图4：MxA标准化率与NAb浓度的相关图(基线BAb=NAb=患者)

图5：根据样本抽取时间点检测的抗体情况对患者进行分组，研究中和抗体对生物标志物(0.6A)的影响(基础和6月)

讨论

中和抗体已经显示了能够减少β干扰素的临床疗效[15,12,13]，系干扰素与其受体结合减少所致。在这个研究中，与皮下注射β干扰素-1a和β干扰素-1b相比，肌肉注射β干扰素-1a显示了最小的免疫原性。本研究与以往的研究结果一致。后，从上研究也报道IFNβ不同型的NAb阳性率不同。

本研究数据证明为同源研究中规模最大的，我们的结果显示中和抗体对β干扰素生物活性的影响，中和抗体有效地减弱MxA、INF-1a和INF-1b三个药物的特异性β干扰素反应，它们是所有β干扰素诱导生物活性反应的良好标志。在以前的研究中，已经显示中和抗体能够减弱几个干扰素诱导产物的表达，包括MxA，新蛋白，IL-6，抗病毒活性因子，以及细胞因子的产生。在这个研究中，我们发现中和抗体与β干扰素抗体反应相关。

中和抗体对于生物标志反应的影响与中和抗体的滴度有关。更低中和抗体(C0-98 TRU)的患者显示可检测的生物标志反应，但是与BAb-NAb患者相比更显著降低。生物标志反应在BAb-NAb患者中较差，BAb-NAb患者可能由于高滴度的结合抗体对生物标志反应的影响。但是更可能是由于中和抗体的特异性人群通过1:20这个水平来定义，这个水平很重要。通过这个水平的定义中和抗体的活性已广为接受。然而，一些BAb-NAb患者可能有低水平的中和抗体(1.5或1.10)，并且已经证明这种患者的亚组与那些中和抗体反应完全一致的患者相比具有更低的β干扰素生物标志反应[15]。中和抗体滴度<100 TRU的患者没有可检测的生物标志反应。这些结果与以前的研究一致，中和抗体
参考文献

