RT Journal Article SR Electronic T1 α-Synuclein in cutaneous autonomic nerves JF Neurology JO Neurology FD Lippincott Williams & Wilkins SP 1604 OP 1610 DO 10.1212/WNL.0b013e3182a9f449 VO 81 IS 18 A1 Wang, Ningshan A1 Gibbons, Christopher H. A1 Lafo, Jacob A1 Freeman, Roy YR 2013 UL http://n.neurology.org/content/81/18/1604.abstract AB Objective: To develop a cutaneous biomarker for Parkinson disease (PD).Methods: Twenty patients with PD and 14 age- and sex-matched control subjects underwent examinations, autonomic testing, and skin biopsies at the distal leg, distal thigh, and proximal thigh. α-Synuclein deposition and the density of intraepidermal, sudomotor, and pilomotor nerve fibers were measured. α-Synuclein deposition was normalized to nerve fiber density (the α-synuclein ratio). Results were compared with examination scores and autonomic function testing.Results: Patients with PD had a distal sensory and autonomic neuropathy characterized by loss of intraepidermal and pilomotor fibers (p < 0.05 vs controls, all sites) and morphologic changes to sudomotor nerve fibers. Patients with PD had greater α-synuclein deposition and higher α-synuclein ratios compared with controls within pilomotor nerves and sudomotor nerves (p < 0.01, all sites) but not sensory nerves. Higher α-synuclein ratios correlated with Hoehn and Yahr scores (r = 0.58–0.71, p < 0.01), with sympathetic adrenergic function (r = −0.40 to −0.66, p < 0.01), and with parasympathetic function (r = −0.66 to −0.77, p > 0.01).Conclusions: We conclude that α-synuclein deposition is increased in cutaneous sympathetic adrenergic and sympathetic cholinergic fibers but not sensory fibers of patients with PD. Higher α-synuclein deposition is associated with greater autonomic dysfunction and more advanced PD. These data suggest that measures of α-synuclein deposition in cutaneous autonomic nerves may be a useful biomarker in patients with PD.PD=Parkinson disease; PGP=protein gene product